期刊文献+

噪声驱动的随机Cahn-Hilliard方程的大偏差原理

Large deviation principle for stochastic Cahn-Hilliard equation driven by fractional and colored noise
下载PDF
导出
摘要 研究了时间分式空间有色噪声驱动的随机Cahn-Hilliard方程解的存在性和唯一性。利用截断函数处理漂移项,利用变量替换处理随机积分,得到了局部解;验证了局部解的弱收敛性,获得了原方程温和解与Hurst指数之间的关系;验证了方程在特殊噪声下骨架函数的正则性,得到了Freidlin-Wentzell关系式。最后验证了大偏差原理。 This paper studies the existence and uniqueness of mild solution to stochastic Cahn-Hilliard equations,driven by fractional-colored noise,which is fractional in time and colored in space,with spatial kernel f.A local solution is found by truncating drift term and applying variable substitution to stochastic integral.We prove the tightness of truncated solution by estimating Green function.Finally,a weak convergence of local solution is explored to verify the existence and uniqueness for mild solution of original equation.Coefficient conditions related to Hurst exponent H is then revealed.Furthermore,regularity of the skeleton are checked by applying Cauchy-Schwarz,Burkholder's inequalities and estimating Green function.It makes use of Gronwall's lemma and Girsanov's theorem to reduce large deviation form.We obtain Freidlin-Wentzell inequality in a special space,in which extension of Garsia's lemma plays an important role.The large deviation principle with a small perturbation can then be established.
作者 周杰 ZHOU Jie(School of Mathematical Sciences,Nankai University,Tianjin 300071,China)
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第3期314-320,共7页 Journal of Zhejiang University(Science Edition)
关键词 CAHN-HILLIARD方程 温和解 有色噪声 大偏差原理 Cahn-Hilliard equation mild solution fractional-colored noise large deviation principle
  • 相关文献

参考文献2

二级参考文献29

  • 1Da Prato, G., Debussche, A.: Stochastic Cahn-Hilliard equation. Nonlinear Anal, 26, 241-263 (1994).
  • 2Bo, L., Shi, K., Wang, Y.: Jump type Cahn-Hilliard equations with fractional noises. To appear in Chin. Ann. Math., Series B, (2008).
  • 3Bo, L., Wang, Y.: Stochastic Cahn-Hilliard partial differential equations with Levy spacetime white noises. Stoch. Dyn.,6(2), 229-244 (2006).
  • 4Cardon-Weber, C.: Cahn-Hilliard stochastic equation: existence of the solution and of its density. Bernoulli 7(5), 777-816 (2001).
  • 5Blowey, J., Elliott, C.: The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis. European J. Appl. Math., 3, 147-179 (1992).
  • 6Cahn, J., Hilliard , J.: Free energy for a nonuniform system I. Interfacial free energy. J. Chem. Phys., 2, 258-267 (1958).
  • 7Liu, C., Qi, Y., Yin, J.: Regularity of solutions of the Cahn-Hilliard equation with non-constant mobility. Acta Mathematica Sinica, English Series, 22(4), 1139-1150 (2006).
  • 8Novick-Cohen, A., Segel, L.: Nonlinear aspects Of the Cahn-Hilliard equation. Phys. D, 10, 277-298 (1984).
  • 9Cardon-Weber, C.: Large deviations for a Burgers-type SPDE. Stoch. Proc. Appl., 84, 53-70 (1999).
  • 10Sowers, R.: Large deviations for a reaction-diffusion equation with non-Gaussian perturbations. Ann. Proba, 1(20), 504-537 (1992).

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部