期刊文献+

具有免疫效力的计算机病毒传播模型的动力学分析和优化控制研究

Kinetic analysis and optimal control of computer virus transmission model with immune function
下载PDF
导出
摘要 信息时代计算机病毒的传播、爆发对社会生产和人民生活造成严重影响,有效预防和抑制计算机病毒传播尤为重要。结合最优控制方法,建立了一种具有免疫效力的计算机病毒传播模型。由下一代矩阵方法求得基本再生数R_(0),并证明了无病平衡点的全局稳定性,通过敏感性分析找到对R_(0)敏感的参数;构建了Liapunov函数,证明了当R_(0)≤1时无病平衡点的全局稳定性;基于庞特里亚金最值原理得到最优解。用数值模拟方法对不同控制措施下的结果进行对比分析,结果表明,在及时检测并隔离被感染计算机并提高杀毒软件的安装率和保护率的情况下,控制目标的时间最短且控制成本最低。 The spread and outbreak of computer viruses in the information age have had a huge impact on social production and people's lives,and it is particularly important to effectively prevent and suppress the spread of computer viruses.In this paper,a computer virus propagation model with immune function is established making use of the optimal control method.It obtains the basic reproduction number R_(0) based on the method of the next generation matrix;It builds the Liapunov function,and proves the condition of the global stability of the disease-free equilibrium point when R_(0)≤1;The optimal solution is obtained based on Pontryagin's principle of maximum value.Numerical simulation results show that the optimal control model can detect and deal with infected computers while improving the installation and protection rate of antivirus software,and the control target time is the shortest and the control cost is the lowest.
作者 陈维 何剑 刘毅 CHEN Wei;HE Jian;LIU Yi(School of Instrument and Electronics,North University of China,Taiyuan 030051,China)
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第3期336-346,共11页 Journal of Zhejiang University(Science Edition)
基金 国家重点研发计划项目(2019YFFO301802) 山西省留学基金项目(2020-112) 山西省高等学校科技新计划项目(2020L0268) 山西省基础研究计划项目(20210302124390).
关键词 计算机病毒 动力学分析 最优控制 敏感性分析 免疫功能 computer virus kinetic analysis optimal control sensitivity analysis immune function
  • 相关文献

参考文献12

二级参考文献69

  • 1Wierman J C, Marchette D J. Modeling Computer Virus Prevalence with a Susceptible Infected Susceptible Model with Reintroduction[ J]. Computational Statistics & Analysis ,2004,45 ( 1 ) :3 - 23.
  • 2Yuan H, Chen G. Network Virus Epidemic Model with the Point to Group Information Propagation[ J]. Applied Mathematics and Computation,2008,206( 1 ) :357 - 367.
  • 3Mishra B K, Saini D K. SEIRS Epidemic Model with Delay for Transmission of Malicious Objects in Computer Network [ J ]. Applied Mathematics and Computation,2007,188 ( 2 ) : 1476 - 1482.
  • 4Billings L,Spears W M,Schwartz I B. A Unified Prediction of Computer Virus Spread in Connected Networks[ J]. Physics Letters A ,2002,297 (6) :261 - 266.
  • 5Piqueira J R C,Navarro B F. Epidemiological Models Applied to Viruses in Computer Networks[ J]. Joumal of Computer Science ,2005 ( 1 ) :31 - 34.
  • 6Gan C Q, Yang X F, Liu W P, et al. A Propagation Model of Computer Virus with Nonlinear Vaccination Probability [ J ]. Commun Nonlinear Sci Numer Simulat,2014 ,19 :92 - 100.
  • 7Mishra B K, Pandey S K. Dynamic Model of Worms with Vertical Transmission in Computer Network [ J]. Applied Mathematics and Comnutation.2011.217.8438 - 8446.
  • 8Zhu Q Y,Yang X F,Yang L X, et al. Optimal Control of Computer Virus Under a Delay Model[ J ]. Applied Mathematics and Computation ,2012,218 : 11613 - 11619.
  • 9Gan C Q, Yang X F, Liu W P, et al. An Epidemic Model of Computer Viruses with Vaccination and Generalized Nonlinear Incidence Rate[ J]. Applied Mathematics and Computation,2013,222:265 - 274.
  • 10Min L Q,Su Y M, Kuang Y. Mathematical Analysis of a Basic Virus Infection Model with Application to HBV Infection [ J]. Rocky Mountain J Math,2008,38:1573 - 1584.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部