摘要
为克服传统语音分析方法的局限性,文章采用基于时频域分析的长短时记忆网络模型,提出基于时频域分析的长短时记忆(Long Short-Term Memory,LSTM)电力系统报警方法。同时,在UrbanSound8K数据集上开展实验验证该方法的有效性。结果表明,该方法的准确性、精确度、召回率和F1分数等较高,表现出在正常和异常声音分类任务上的平衡性和稳定性。
In order to overcome the limitations of traditional speech analysis methods,the LSTM electric power system alarm method based on time-frequency domain analysis is proposed by using time-frequency domain memory network model.At the same time,experiments are carried out on UrbanSound8K dataset to verify the effectiveness of the proposed method.The results show that the method has high accuracy,precision,recall rate and F1 score,which shows the balance and stability of normal and abnormal sound classification tasks.
作者
李慕轩
LI Muxuan(State Grid Tianjin Information&Telecommunication Company,Tianjin,300140,China)
出处
《信息与电脑》
2024年第4期138-140,共3页
Information & Computer
关键词
电力系统
时频域分析
长短期记忆网络
报警方法
electric power system
time-frequency domain analysis
long short-term memory network
alarm method