期刊文献+

基于混合人工神经网络的冷连轧水平力预测

Prediction on horizontal force in cold continuous rolling based onhybrid artificial neural network
原文传递
导出
摘要 针对冷连轧机组辊系中工作辊沿带钢运动方向的水平力难以利用传统的数学模型进行计算的问题,提出了利用混合人工神经网络模型对其进行预测。分析了工作辊在轧制过程中的受力情况,并根据监测的状态参数,从中挑选了轧制力、弯辊力矩、张力、带钢厚度、弯辊力等几类对工作辊受到的沿带钢运动方向的水平力有影响的参数作为输入变量。提出了两种新型的粒子群优化算法,并对人工神经网络的初始化权值与阈值进行优化。通过对预测结果进行分析发现,提出的改进混合人工神经网络相比较改进前能够提高模型的预测精度,且拟合精度均达到90%以上,可用于指导实际生产。 For the problem that it is difficult to use the traditional mathematical model to calculate the horizontal force of working roll along the direction of strip steel movement in the cold continuous rolling mill roll system,a hybrid artificial neural network model was proposed to predict it,and the stress situation of working roll during the rolling process was analyzed.Then,based on the monitored state parameters,several types of parameters that had an impact on the horizontal force acting on the working roll along the direction of strip steel movement,such as rolling force,bending moment,tension,strip steel thickness and bending force,were selected as input variables,and two new particle swarm optimization algorithms were proposed to optimize the initialization weights and thresholds of artificial neural networks.The prediction analysis results show that the proposed improved hybrid artificial neural network can improve the prediction accuracy of the model compared with that before improvement,and the fitting accuracy is more than 90%,which can be used to guide the actual production.
作者 夏军勇 卢奇 张子健 周宏娣 Xia Junyong;Lu Qi;Zhang Zijian;Zhou Hongdi(Hubei Key Laboratory of Modern Manufacturing,School of Mechanical Engineering,Hubei University of Technology,Wuhan 430068,China;WISDRI Engineering&Research Incorporation Limited,Wuhan 430223,China)
出处 《锻压技术》 CAS CSCD 北大核心 2024年第3期86-93,共8页 Forging & Stamping Technology
基金 国家自然科学基金资助项目(52005168) 武汉市科技成果转化专项(2020030603012342) 湖北省科技创新人才计划(2023DJCO68)。
关键词 冷连轧机 带钢轧制 工作辊 混合人工神经网络 粒子群优化算法 cold continuous rolling mill strip steel rolling working roll hybrid artificial neural network particle swarm optimization algorithm
  • 相关文献

参考文献19

二级参考文献155

共引文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部