摘要
煤矿的安全事故大多由矿工的不安全行为导致,YOLOv5目标检测模型可通过视频数据检测矿工的违规行为,以降低事故发生的概率。但是YOLOv5模型存在训练速度慢、召回率低的问题,针对该问题对模型进行修改。改进后的模型相较于原模型大大提高了召回率及准确率,测试结果优秀,可成功应用在煤矿违规行为识别过程中。
Most safety accidents in coal mines are caused by unsafe behaviors of miners.The YOLOv5 object detection model can detect miners’violations through video data to reduce the probability of accidents occurring.However,YOLOv5 has issues with slow training speed and low recall rate,and the model needs to be modified to address these issues.The improved model significantly improves the recall and accuracy compared to the original model,and the test results are excellent,which can be successfully applied in the process of identifying violations in coal mines.
作者
方成焰
杨超宇
FANG Cheng-yan;YANG Chao-yu(School of Computer Science and Engineering,Anhui University of Science and Technology,Huainan 232001,China)
出处
《南阳理工学院学报》
2024年第2期63-68,共6页
Journal of Nanyang Institute of Technology
基金
国家自然科学基金项目(61873004)。
关键词
轻量化网络
煤矿安全
行为识别
lightweight
coal mine safety
action recognition