摘要
结合一次同余方程的相关知识,研究了一类三元生成的6p^(2)阶非交换群的元素性质及自同态和自同构,计算了其自同态和自同构数量,验证其自同态数量是满足T.Asai和T.Yoshida的猜想的.
Combined with the relevant knowledge of linear congruence equation,the element properties,endomorphisms and automorphisms of a class of ternary generated non-abelian groups with 6Ρ^(2)order are studied.The number of end-omorphisms and automorphisms is calculated,and it is verified that the number of endomorphisms satisfies the conjecture of T.Asai and T.Yoshida.
作者
鲁子怡
高百俊
Lu Ziyi;Gao Baijun(College of Mathematics and Statistics,Yili Normal University,Yining,Xinjiang 835000,China;Institute of Applied Mathematics,Yili Normal University,Yining,Xinjiang 835000,China)
出处
《伊犁师范大学学报(自然科学版)》
2024年第1期8-13,共6页
Journal of Yili Normal University:Natural Science Edition
基金
新疆维吾尔自治区天山青年人才项目(2020Q023)
伊犁哈萨克自治州科技计划项目(YJC2023A04).
关键词
自同态数量
自同构数量
一次同余方程
number of endomorphisms
number of automorphisms
linear congruence equation