期刊文献+

基于模糊计算法的皮带机信号辨识

Signal Identification of Belt Conveyor Based on Fuzzy Computing Method
下载PDF
导出
摘要 为了使出料皮带机简化为悬臂梁后的激励力更贴近于合理值,先获得悬臂梁被激励时力传感器采集到的数据集,再运用模糊贴近方法计算最贴近试验数据的观测模糊向量。然后,为了确定试验信号中较大幅值的分布情况,对6个信号幅值运用模糊聚类算法进行迭代计算其较大幅值的聚类中心。最后,运用分类数据的较大幅值作为代表值,将含有的关键数据替代原信号幅值。分析表明移动破碎装置中出料皮带机的加速度振幅值能够较好地聚类,为技术人员提供了重要依据。 In order to make the excitation force of the belt conveyor simplified as a cantilever beam closer to a reasonable value,the dataset collected by the force sensor when the cantilever beam is excited is first obtained,and then the observation fuzzy vector closest to the experimental data is calculated using the fuzzy approximation method.Then,in order to determine the distribution of larger values in the experimental signal,a fuzzy clustering algorithm was used to iteratively calculate the clustering centers of the larger amplitudes of the six signal amplitudes.Finally,the larger amplitude of the classified data is used as a representative value to replace the original signal amplitude with the key data contained.The analysis shows that the acceleration amplitude values of the discharge belt conveyor in the mobile crushing device can be well clustered,providing important basis for technical personnel.
作者 赵德凯 宋周义 杨家福 王鑫 Zhao Dekai;Song Zhouyi;Yang Jiafu;Wang Xin(Gansu Jiantou Jingtai Green Mining Co.,Ltd.,Jingtai,China)
出处 《科学技术创新》 2024年第10期82-85,共4页 Scientific and Technological Innovation
关键词 出料皮带机 模糊贴近方法 观测模糊向量 模糊聚类算法 the belt conveyor the fuzzy approximation method observation fuzzy vector fuzzy clustering algorithm
  • 相关文献

参考文献4

二级参考文献37

  • 1朱建新.移动式破碎机的应用及方案设计[J].露天采矿技术,1991,0(2):14-16. 被引量:1
  • 2LI C, LIANG M. Separation of vibration-induced signal of oil debris sensor for vibration monitoring[J]. Smart Materials andStructures, 2011, 20(3): 045019.
  • 3ANTONI J, RANDALL R B. The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines[J]. Mechanical Systems and Signal Processing, 2006, 20: 308-331.
  • 4ANTONI J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007, 21: 108-124.
  • 5LEI Y, LIN J, HE Z, et al. Application of an improved kurtogram method for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2011, 25. 1738-1749.
  • 6LIU H, HUANG W, WANG S, et al. Adaptive spectral kurtosis filtering based on Morlet wavelet and its application for signal transients detection[J]. Signal Processing, 2014, 96: 118-124.
  • 7LI C, LIANG M, ZHANG Y, et al. Multi-scale autocorrelation via morphological wavelet slices for rolling element bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2012, 31. 428-446.
  • 8BOZCHALOOI I S, LIANG M. A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection[J]. Journal of Sound and Vibration, 2007, 308: 246-267.
  • 9GRYLLIAS K C, ANTONIADIS I. A peak energy criterion (EE.) for the selection of resonance bands in complex shifted Morlet wavelet (CSMW) based demodulation of defective rolling element bearing vibration response[J]. International Journal of Wavelets Multiresolution and Information Processing, 2009, 7(4): 387-410.
  • 10LI C, LIANG M. Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform [J]. Mechanical Systems and Signal Processing, 2012, 26(1): 205-217.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部