摘要
冲压件在生产过程中容易出现裂纹、划痕、起皱、凹凸点等缺陷。目前,生产线上的冲压件缺陷检测以人工检测为主,效率低,且容易造成漏检。为此,提出了一种基于改进YOLOv5模型的缺陷检测算法。为了提高缺陷部分的关注度,更好地聚焦缺陷,本文在YOLOv5模型的主干网络中引入CA注意力模块。为了进一步提升模型的精度,本文通过对比实验,将目标框损失函数改为GIoU,提升了定位精度。实验表明,相较于原模型,改进后的YOLOv5模型精准度、召回率、mAP值均得到提升。
Stamped parts are prone to cracks,scratches,wrinkles,bumps and other defects in the production process.At present,the defect detection of stamped parts on the production line is based on manual detection,which is inefficient and prone to leakage.For this reason,a defect detection algorithm based on the improved YOLOv5 model is proposed.In order to improve the attention of the defective part and better focus the defects,this paper introduces the CA attention module in the backbone network of the YOLOv5 model.To further improve the accuracy of the model,this paper improves the localization accuracy by changing the target frame loss function to GIoU through comparative experiments.The experiments show that compared with the original model,the improved YOLOv5 model precision,recall,and mAP value are all improved.
作者
夏巍
操乐文
苏亮亮
XIA Wei;CAO Lewen;SU Liangliang(School of Electronics and Communication Engineering,Anhui Jianzhu University,Hefei 230601,China)
出处
《安徽建筑大学学报》
2024年第1期61-67,共7页
Journal of Anhui Jianzhu University
基金
国家自然科学基金项目(62001004)。