期刊文献+

基于多硬币量子游走的仲裁量子(t,n)门限群签名

Arbitrated quantum(t,n)threshold group signature scheme based on multi-coin quantum walk
原文传递
导出
摘要 量子群签名是一类具有特殊性质的仲裁量子签名的变体.大多数现有的基于隐形传态的量子群签名方案不具备门限性质,也难以拓展为量子门限群签名.为了实现从普通量子签名向量子(t,n)门限群签名的扩展,解决基于联合Bell态测量的量子签名效率低下的问题,本文以量子游走实现的广义隐形传态为基础,提出了一种量子(t,n)门限群签名方案.n个签名者组成一个群组,只有其中的t个签名者可以利用量子游走系统代表该群组生成一个有效的签名.所提出方案使用基于多硬币量子游走的隐形传态来传递量子消息,量子一次一密验证量子消息.验签者在可信仲裁者的帮助下,通过量子比较算法来检查签名的有效性.在安全性方面,所提出方案满足门限群签名的不可伪造性、不可否认性、门限安全性、签名者身份可追踪性和签名者的匿名性要求.在效率方面,所提出方案使用基于量子游走的隐形传态实现量子信息的传输,无需提前制备纠缠量子态,以高效的单粒子投影测量代替联合测量.此外,所提出方案使用随机数和公共板,可以避免验签者对签名的否认并保证签名的完整性. The quantum group signature is a variant of the arbitrated quantum signature with special properties.Most existing teleportation-based quantum group signature schemes do not possess threshold properties,and extending them to quantum threshold group signatures is difficult.Therefore,to realize the extension from ordinary quantum signature to quantum(t,n)threshold group signature and solve the problem of low efficiency of quantum signature based on joint Bell state measurement,this paper proposes a quantum(t,n)threshold group signature scheme based on generalized teleportation implemented by multi-coin quantum walk.In the proposed scheme,n signers form a group,and only t signers can generate a valid signature on behalf of the group using the quantum walking system.In addition,a verifier checks the validity of the signature through the quantum one-time pad and quantum comparison algorithm using a trusted arbiter.The security analysis shows that the proposed scheme meets the requirements of unforgeability,nonrepudiation,threshold security,signer identity traceability,and signer anonymity.In terms of efficiency,the proposed scheme uses teleportation based on multi-coin quantum walk to transmit the quantum message without the need to prepare entangled quantum states in ad-vance.It then replaces the joint Bell measurement of quantum teleportation with a more efficient projection measurement.Moreover,the proposed scheme uses random numbers and public boards,which can avoid the repudiation of signatures and guarantee their integrity.
作者 尚涛 侯鹏林 刘雨辰 熊科宇 刘建伟 SHANG Tao;HOU PengLin;LIU YuChen;XIONG KeYu;LIU JianWei(School of Cyber Science and Technology,Beihang University,Beijing 100083,China)
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2024年第4期134-145,共12页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金(编号:61971021) 河北省重点研发计划项目(编号:22340701D) 中国高校产学研创新基金-北创助教项目(编号:2021BCA0200)资助。
关键词 量子隐形传态 多硬币量子游走 量子门限签名 quantum teleportation multi-coin quantum walk threshold quantum signature
  • 相关文献

参考文献1

二级参考文献18

  • 1曾贵华.特洛依木马攻击下的量子密码安全性(英文)[J].软件学报,2004,15(8):1259-1264. 被引量:2
  • 2温晓军,刘云,张鹏云.基于EPR粒子对的信息签名协议[J].大连理工大学学报,2007,47(3):424-428. 被引量:11
  • 3BENNETT C H, BRASSARD G. Quantum cryptography public-key distribution and coin tossing[ C]//Proc of IEEE International Conference on Computers, Systems and Signal Processing. India: Bangalore Press, 1984 : 175-179.
  • 4BENNETT C H. Quantum cryptography using any two nonorthogonal states[ J ]. Phys Rev kerr,1992,68(21 ) :3121-3124.
  • 5DENG F G, LONG G L. Controlled order rearrangement encryption for quantum key distribution[J]. Phys Roy A,2003,68(4)2315- 1-4.
  • 6LUCAMARINI M, MANCINI S. Secure deterministic communication without entanglement [ J ]. Phys Rev Lett,2005,94 ( 14 ) : 140501- 1-4.
  • 7EKERT A K. Quantum cryptography based on Bell' s theorem [ J ]. Phys Rev Lett,1991,67(6) :661-664.
  • 8SUDHEESH C, LAKSHMIBALA S, BALAKRISHNAN V. Dynamics of quantum observables in entangled states[ J]. Physics Letters A, 2009,373(32) :2819-2874.
  • 9WANG Shu-mei, MA Hong-yang. Quantum secure communication network on EPR states[ C ]//Proc of International Conference on Network and Parallel Computing. 2008:545-548.
  • 10WEN Jia-yan, QIU Dao-wen. Adiabatic quantum evolution for preparation of quantum entanglement states[ C]//Proc of the 27 th Chinese on Control Conference. 2008:177-181.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部