期刊文献+

基于复合神经网络的多源气动数据建模

Multi-fidelity aerodynamic data analysis by using composite neural network
下载PDF
导出
摘要 将深度学习方法应用至气动数据建模,能够解决传统建模方法效率低、代价高的问题,具有重要的现实意义。基于复合神经网络模型对多源气动数据进行学习,利用低精度数据辅助高精度数据进行预测。与不同网络模型进行对比,验证了文中提出的复合神经网络在气动数据建模中表现优良,且泛化能力较好。 Applying deep learning to aerodynamic data modeling has important practical significance.In this paper,the composite neural network is applied to the aerodynamics,making full use of the different characteristics of high and low-fidelity aerodynamic data.Multi-fidelity analysis technique is also used to analyze the correlation between the two types of data so as to establish the composite neural network.The experimental results show that the learning of multi-fidelity aerodynamic data based on the composite neural network model can better capture the mapping relationship between the aerodynamic input and the output data.And after comparing with the single neural network,it is verified that the present model has excellent performance in the regression modeling of aerodynamic data.
作者 朱星谕 梅立泉 ZHU Xingyu;MEI Liquan(School of Mathematics and Statistics,Xi′an Jiaotong University,Xi′an 710049,China)
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2024年第2期328-334,共7页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(12171385)资助。
关键词 气动数据建模 深度神经网络 复合神经网络 aerodynamic data modeling deep neural network composite neural network
  • 相关文献

参考文献2

二级参考文献14

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部