期刊文献+

渐进式分组狩猎的灰狼优化算法及其工程应用 被引量:1

Grey wolf optimization algorithm based on progressive grouping hunting mechanism and its engineering applications
下载PDF
导出
摘要 针对灰狼优化算法(GWO)在求解复杂优化问题时存在后期收敛速度慢、易陷入局部最优的不足,提出了一种渐进式分组狩猎的灰狼优化算法(PGGWO)。首先,设计了非线性多收敛因子以增强全局勘探能力、避免局部最优;其次,提出了渐进式位置更新策略,该策略引入长鼻浣熊的包围策略和动态权重因子,前者在提高收敛精度和速度的同时避免局部最优,后者则动态地提升算法的收敛速度及全局寻优性能;最后,通过与标准GWO、4个GWO先进变体以及4个竞争力较强的新型进化算法对比,验证了PGGWO的有效性和先进性。在24个Benchmark函数和3个实际工程优化问题上的实验结果表明,PGGWO在收敛精度和收敛速度上具有明显优势,并且对约束优化问题也是有效的。 Focus on the shortcomings of the GWO in solving complex optimization problems,such as slow convergence speed and easy to fall into local optimum,this paper proposed a grey wolf optimization algorithm based on progressive grouping hunting mechanism(PGGWO).Firstly,it designed the nonlinear multi convergence factors to enhance the global exploration ability and avoid local optimum.Secondly,it proposed a progressive location update strategy.The strategy introduced the encirclement strategy of coati and dynamic weight factors,the former avoided local optimum while improving convergence accuracy and speed,the latter dynamically improved the convergence speed and global optimization performance of the algorithm.Finally,through comparing with GWO,4 advanced GWO variants and 4 new with strong competitiveness,the experiment verifies the effectiveness and advancement of PGGWO.The experimental results on 24 Benchmark functions and 3 practical engineering optimization problems show that PGGWO has obvious advantages in convergence accuracy and convergence speed,and is also effective for constrained optimization problems.
作者 袁钰婷 高岳林 左汶鹭 Yuan Yuting;Gao Yuelin;Zuo Wenlu(School of Computer Science&Engineering,North Minzu University,Yinchuan 750021,China;Ningxia Collaborative Innovation Center for Scientific Computing and Intelligent Information Processing,North Minzu University,Yinchuan 750021,China;School of Mathematics&Information Science,North Minzu University,Yinchuan 750021,China)
出处 《计算机应用研究》 CSCD 北大核心 2024年第5期1409-1419,共11页 Application Research of Computers
基金 宁夏自然科学基金重点资助项目(2022AAC02043) 宁夏高等学校一流学科建设基金资助项目(NXYLXK2017B09) 北方民族大学重大专项(ZDZX201901) 南京证券支持基础学科研究项目(NJZQJCXK202201)。
关键词 灰狼优化算法 渐进式分组狩猎 多收敛因子 动态权重因子 工程约束优化 grey wolf optimizer(GWO) progressive grouping hunting multi convergence factor dynamic weighting factor engineering constrained optimization
  • 相关文献

参考文献8

二级参考文献49

共引文献128

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部