期刊文献+

基于高斯滤波与均值聚类的异质多源传感器数据加权融合

Weighted Fusion of Heterogeneous Multi-Sensor Data Based on Gaussian Filtering and Mean Clustering
下载PDF
导出
摘要 异质多源传感器之间工作频率存在差异,导致数据之间的一致性较差,加权融合后的观测误差较大,因此提出基于高斯滤波与均值聚类的异质多源传感器数据加权融合方法。采用高斯滤波对异质多源传感器数据空间单元格进行划分,建立基于单元格的最佳连通域,保留传感器内部数据,完成传感器数据的高斯滤波平滑处理。引入均值聚类对异质多源传感器数据进行一致性处理。通过免疫粒子群搜索最优权重和参数,利用最优权重和参数完成异质多源传感器数据加权融合。仿真结果表明,所提方法能够降低融合后传感器数据的观测误差与均方误差,观测误差与均方误差最小值均为0.002。因此,说明所提方法提高了融合后异质多源传感器数据的可利用性。 There are differences in the operating frequencies between heterogeneous multi-source sensors,resulting in poor consistency between data and large observation error after weighted fusion.Therefore,a weighted fusion method based on Gaussian filtering and mean clustering is proposed for heterogeneous multi-source sensor data.Gaussian filtering is used to divide the data space cells of heterogeneous multi-source sensors,establish the best connected region based on cells,retain the internal data of sensors,and complete the Gaussian filtering smoothing of sensor data.Mean clustering is introduced to deal with the data consistency of heterogeneous multi-source sensors.The optimal weights and parameters are searched by immune particle swarm optimization,and the heterogeneous multi-source sensor data weighted fusion is completed by using the optimal weights and parameters.The simulation results show that the method can reduce the observation error and mean square error of the fused sensor data,and the minimum values of the observation error and mean square error are both 0.002.Therefore,the availability of heterogeneous multi-source sensor data after fusion is improved.
作者 张丽 郭海涛 ZHANG LI;GUO Haitao(School of Information Engineering,Sichuan TOP IT Vocational Institute,Chengdu Sichuan 611743,China;School of Civil Engineering and Transportation,South China University of Technology,Guangzhou Guangdong 510640,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2024年第3期519-523,共5页 Chinese Journal of Sensors and Actuators
基金 人工智能四川省重点实验室开放资金项目(2020RYJ01)。
关键词 异质多源传感器 数据加权融合 高斯滤波 均值聚类 heterogeneous multi-source sensor weighted data fusion gaussian filtering mean clustering
  • 相关文献

参考文献8

二级参考文献66

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部