期刊文献+

基于惯性数据融合的串联机械臂运动状态估计方法 被引量:1

Motion state estimation method for serial manipulator based on inertial data fusion
下载PDF
导出
摘要 在串联机械臂运动跟踪中,将惯性测量单元(IMU)的运动信息映射到机械臂运动链上,针对IMU测量时的安装误差和随机噪声会影响到测量信息准确性的问题,提出了一种基于IMU数据融合的运动状态估计方法。该方法首先对传感器与旋转关节坐标系进行校准,再通过融合IMU中陀螺仪和加速计信息,建立了基于扩展卡尔曼滤波(EKF)算法的运动姿态最优估计模型。与机械臂实际输出的角度信息相比,所提方法的平均角度和位姿均方根误差(RMSE)为0.19°和0.45 mm,均优于单目相机惯性传感器联合标定方法。实验结果表明:该方法能够精确地估计机械臂运动状态,并且具有精度更高且运动空间不受限制的优点。 In serial manipulator motion tracking,motion information of the inertial measurement unit(IMU)is mapped to the manipulator motion chain.Aiming at the problem that the installation error and random noise during IMU measurement will affect the accuracy of the measurement information,a motion state estimation method based on IMU data fusion is proposed.The method calibrates the coordinate system of the sensor with the rotating joint firstly.Then,an optimal motion state estimation model is built based on extended Kalman filtering(EKF)algorithm by fusing the information from gyroscope and accelerometer of IMU.Compared with the actual output angle information of the manipulator,the proposed method has an average angle and root mean square error(RMSE) of pose 0.19°and 0.45 mm,respectively,which are both prior to those of monocular camera-inertial sensor calibration method.The experimental results show that the method can estimate the manipulator motion state accurately,and has the advantages of higher precision and unrestricted motion space.
作者 段一凡 杨进兴 李俊 徐敏 DUAN Yifan;YANG Jinxing;LI Jun;XU Min(School of Electrical Engineering and Automation,Xiamen University of Technology,Xiamen 361000,China;Quanzhou Institute of Equipment Manufacturing,Quanzhou 362216,China)
出处 《传感器与微系统》 CSCD 北大核心 2024年第5期125-128,共4页 Transducer and Microsystem Technologies
基金 泉州市科技计划项目(2021C021R)。
关键词 机械臂 信息融合 状态估计 卡尔曼滤波 manipulator information fusion state estimation Kalman filtering
  • 相关文献

参考文献4

二级参考文献32

  • 1吕强,王晓龙,刘峰,夏凡.基于点云配准的室内移动机器人6自由度位姿估计[J].装甲兵工程学院学报,2013,27(4):51-56. 被引量:5
  • 2Ho B L, Kalman R E. Effective construction of linear state-variable models from input/output data [C]. Proc. 3rd Annual Allerton Conference on Circuit and System Theory, Univ. of Illinois, Urbana, IL: 449-459; also, Regelungstechnik, 1966, 14: 545--548.
  • 3Peeters B. System identification and damage detection in civil engineering [D]. Belgium: Katholieke Universiteit Leuven, 2000.
  • 4Peeters B, De Roeck G. Stochastic system identification for operational modal analysis: a review [J]. Journal of Dynamic Systems, Measurement, and Control, ASME, 2001, 123(12): 659--667.
  • 5Tseng D H, Longman R W, Juang J N. Identification of gyroscopic and nongyroseopic second order mechanical systems including repeated problems [J]. Advances in the Astronautical Sciences, 1994, 87: 145-165.
  • 6Wang D, Haldar A. Element-level system identification with unknown input [J]. Journal of Engineering Mechanics, ASCE, 1994, 120(1): 159-176.
  • 7Lus H, De Angelis M, Betti R, Longman R W. Constructing second-order models of mechanical systems from identified state space realizations. Part I: Theoretical discussions [J]. Journal of Engineering Mechanics, ASCE, 2003, 129(5): 489--501.
  • 8Lus H, De Angelis M, Betti R. A new approach for reduced order modeling of mechanical systems using vibration measurements [J]. Journal of Applied Mechanics, ASME, 2003, 70(9): 715-- 723.
  • 9Alvin K F, Park K C. Second-order structural identification procedure via state-space-based system identification [J]. AIAA Journal, 1994 32(2): 397--406.
  • 10De Angelis M, Lus H, Betti R, Longman R W. Extracting physical parameters of mechanical models from identified state-space representations [J]. ASME Journal of Applied Mechanics, 2002, 69(5): 617-- 625.

共引文献23

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部