期刊文献+

基于GSABO-BP和Bootstrap的电力负荷区间预测 被引量:1

Power load interval prediction based on GSABO-BP and Bootstrap
下载PDF
导出
摘要 针对电力负荷序列波动性强、预测精度低的问题,提出一种基于GSABO-BP模型和Bootstrap的电力负荷区间预测方法。首先提出一种改进的减法优化算法(GSABO),在保留减法优化算法(SABO)良好的收敛性基础上,融合黄金正弦算法(Gold-SA)来提升其搜索能力;然后,利用所提方法对BP神经网络的权值和阈值进行寻优,构建GSABO-BP预测模型,对电力负荷进行点预测;最后,采用Bootstrap方法分析电力负荷功率预测误差,结合点预测结果确定输出结果的波动区间。经仿真测试,所提方法寻优能力强、鲁棒性好;且相比于其他算法,该方法的预测精度、区间可靠性、区间宽度等均有显著提升。综合点预测和区间预测效果可知,二者结合有助于准确评估预测误差,具有较高的实际应用价值。 In allusion to the issue of high volatility in electricity load sequences and low predictive accuracy,an electricity load interval prediction method based on the GSABO-BP(golden sine algorithm-subtraction average based optimizer-back propagation)model and Bootstrap is proposed.An improved GSABO algorithm is proposed,which can integrate the golden sine algorithm(Gold-SA)to enhance its search ability while preserving the good convergence of the subtraction average based optimizer(SABO).The proposed method is used to optimize the weights and thresholds of the BP neural network,constructing a GSABO-BP prediction model for point prediction of power load.The Bootstrap method is used to analyze the error of power load prediction,and determine the fluctuation range of the output results by combining with the point prediction results.The simulation testing shows that the proposed method has strong optimization ability and good robustness.In comparison with other algorithms,this method has significantly improved in prediction accuracy,interval reliability,interval width,etc.The combination of point prediction and interval prediction results can help accurately evaluate prediction errors and has high practical application value.
作者 李琦 许素安 LI Qi;XU Suan(College of Mechanical and Electrical Engineering,China Jiliang University,Hangzhou 310018,China)
出处 《现代电子技术》 北大核心 2024年第10期28-33,共6页 Modern Electronics Technique
基金 国家自然科学基金面上项目(62373339) 国家电网有限公司科学技术项目(5700-202314248A-1-1-ZN)。
关键词 电力负荷功率 区间预测 BP神经网络 GSABO算法 全局优化 点预测 power load power interval prediction BP neural network GSABO algorithm global optimization point prediction
  • 相关文献

参考文献14

二级参考文献328

共引文献314

同被引文献29

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部