摘要
设计一种基于人工智能技术的机器人运动控制系统,确保机器人更好地理解人类的意图,并提供更加人性化的服务。该系统通过运动数据采集与传输组件连接机器人的轴电机,采集机器人当前运动数据后,将其传输到控制器组件内,控制器组件依托X86架构工控机,使用PIC总线将采集到的机器人当前运动数据发送到基于人工智能技术的机器人运动路径规划模块内。该模块运用人工智能技术中的A*算法获取机器人轨迹路径规划结果后,依据该路径规划结果,将人工智能技术中的神经网络和模糊B样条基函数相结合,建立模糊B样条基函数神经网络控制器。该控制器输出机器人运动控制指令,并发送给伺服驱动器组件,伺服驱动器负责驱动机器人轴电机,控制机器人运动。实验结果表明:所设计系统具备较强的机器人路径规划能力,可在复杂路径情况下实现机器人运动控制,且控制精度和控制阶跃响应能力均较强。
A robot motion control system based on artificial intelligence technology is designed to ensure that robots better understand human intentions and provide more humane services.The system can connect the axis motor of the robot by means of motion data collection and transmission components.After collecting the current motion data of the robot,it is transmitted to the controller component.The controller component relies on the X86 architecture industrial computer and can use the PIC bus to send the collected current motion data of the robot to the robot motion path planning module of artificial intelligence technology.In this module,the A*algorithm in artificial intelligence technology is used to obtain the robot trajectory path planning results.Based on the path planning results,the artificial neural network in artificial intelligence technology is combined with the fuzzy B-spline basis function to establish a the fuzzy B-spline basis neural network controller.The controller outputs the robot motion control command and send it to the servo drive component,which is responsible for driving the robot shaft motor,and control robot movement.The experimental results show that the designed system has strong robot path planning ability,can achieve robot motion control in complex path situations,and has strong control accuracy and step response ability.
作者
李艳红
LI Yanhong(College of Post and Telecommunication and Information Engineering,Wuhan Institute of Technology,Wuhan 430070,China)
出处
《现代电子技术》
北大核心
2024年第10期117-122,共6页
Modern Electronics Technique
基金
湖北省高等教育学会资源平台共建项目专项课题:智能无人系统助力应用型本科高校ICT产教融合创新平台的搭建(2022XC63)。
关键词
人工智能
机器人
运动控制系统
模糊B样条基函数
神经网络
路径规划
artificial intelligence
robots
motion control system
fusion B-spline basis functions
neural networks
path planning