期刊文献+

非小细胞肺癌肿瘤治疗电场电极阵列布局优化方法研究

Research on the optimization of electrode array layout for tumor treating fields in non-small cell lung cancer treatment
下载PDF
导出
摘要 为优化电极阵列排布,提高肿瘤治疗电场(tumor treating fields,TTF)强度,以更有效地抑制肿瘤增殖,本研究以群智能算法为基础,提出了电极感知自适应(electrode-perceptive adaptive,EPA)算法,旨在优化位于胸部区域的四组电极阵列的贴放位置,提高治疗时的电场强度。EPA算法通过迭代搜索,动态地调整电极阵列布局,可最大化肿瘤部位的电场强度,从而提升TTF治疗效果。本研究对应用EPA算法得到的电极阵列优化布局与常规布局进行了仿真实验对比。实验结果表明,相较于常规布局,EPA优化布局可显著提高肿瘤部位的平均电场强度。 In order to optimize the arrangement of electrode array and increase the intensity of tumor treating fields(TTF),the tumor proliferation was inhibited more effectively.An electrode-perceptive adaptive(EPA)algorithm based on swarm intelligence algorithm was proposed to optimize the four sets placement of electrode arrays in the chest area,and enhance the electric field intensity during treatment.The EPA algorithm dynamically adjusted the layout of electrode arrays through iterative search to maximize the electric field intensity at the tumor site,thus improved the effectiveness of TTF treatment.In the simulation experiments,the optimized electrode array layout obtained by EPA algorithm was compared with the conventional layout.The experimental results demonstrate a significant increase in the average electric field intensity at the tumor site with the EPA optimized layout compared with the conventional layout.
作者 林喆 陈春晓 肖月月 王亮 龚荣芳 沈俊 LIN Zhe;CHEN Chunxiao;XIAO Yueyue;WANG Liang;GONG Rongfang;SHEN Jun(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;College of Mathematics,Nanjing University of Aeronautics and Astronautics,Nanjing 211106)
出处 《生物医学工程研究》 2024年第2期136-143,共8页 Journal Of Biomedical Engineering Research
关键词 肿瘤治疗电场 电极感知自适应算法 电极阵列 电场强度 Tumor treating fields Electrode-perceptive adaptive algorithm Electrode array Electric field intensity
  • 相关文献

参考文献3

二级参考文献27

  • 1Zimmerman TG. Personal Area Networks (PAN) : Near-Field Intra-Body Communication, in Media Art and Science [ D ]. Massachusetts Institute of Technology,1995.
  • 2Gao YM,Pun SH, Du M, et al. A preliminary two dimensional model for intra-body communication of body sensor networks [ C ]. Processings of Intelligent Sensors, Sensor Networks and Information. Sydney, IEEE, 2008: 273-278.
  • 3Wegmueller MS, Oberle M, Felber N, et al. Galvanical coupling for data transmission through the human body [ C]. Proceedings of Instrumentation and Measurement Technology Conference, Sorrento, IEEE, 2006: 1686-1689.
  • 4Partridge K,Dahlquist B, Veiseh A, et al. Empirical measurements of intrabody communication performance under varied physical configurations [ C ]. Symposium on User Interface Software and Technology Orlando, Florida, UIST, 2001: 183-190.
  • 5Hachisuka K, Nakata A, Takeda T, et al. Development and performance analysis of an intra-body communication device [ C]. 12th International Conference on Transducers, Solid- State Sensors, Actuators and Microsystcms, Boston, IEEE, 2003 : 1722 - 1725.
  • 6Fujii K,Takahashi M, Ito K. Electric field distributions of wearable devices using the human body as a transmission channel [ J ]. IEEE Trans. On Antennas and Propagation,2007, 55(7) : 2080-2087.
  • 7Lindsey DP, Mckee EL, Hull ML, et al. A new technique for transmission of signals from implantable transducers [J].IEEE Trans on Biota Eng, 1998, 45(5) : 614-619.
  • 8Handa T,Shoji S, Ike S, et al. A very low-power consumption wireless ECG monitoring system using body as a signal transmission medium [C]. International Conference on Solid State Sensors and Actuators, Chicago, IEEE, 1997: 1003-1006.
  • 9Wegmuller MS, Kuhn A, Froehlich J, et al. An attempt to model the human body as a communication channel [ J ]. IEEE Trans Biomed Eng, 2007, 54(10) : 1581-1587.
  • 10Plonsey R. The Biomedical Engineering Handbook[M]. Second Edition. Boca Raton: CRC Press LLC, 1995:119-125.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部