期刊文献+

基于改进YOLOv8模型的巡检机器人目标检测方法研究

Improved YOLOv8 model-based object detection method for inspection robot
下载PDF
导出
摘要 目的:针对巡检机器人对指针式仪表识别准确率不够高、对被遮挡仪表识别效果较差的问题,提出一种基于改进YOLOv8模型的巡检机器人目标检测方法。方法:首先,以YOLOv8n模型作为基础目标检测模型,在此基础上引入坐标注意力机制,加强模型对输入数据的空间结构理解;其次,将损失函数由完整交并比(complete IoU,CIoU)损失函数替换为高效交并比(efficient IoU,EIoU)损失函数,加快模型检测框的收敛速度;最后,采用柔性非极大值抑制(soft non-maximum suppression,Soft-NMS)函数替代传统的非极大值抑制(non-maximum suppression,NMS)函数,以更加平滑地抑制冗余的边界框,进一步提高检测的准确率。为验证改进模型对检测目标的识别效果,将YOLOv8n模型与改进后的YOLOv8模型(YOLOv8nxt模型)进行对比。结果:与YOLOv8n模型相比,YOLOv8nxt模型的位置损失值降低了1.3%,mAP_0.5:0.95提高了1.7%,检测准确率提高了0.87%,模型大小仅为6.2 M,检测时间仅增加了0.2 ms。结论:基于改进YOLOv8模型的巡检机器人目标检测方法提升了巡检机器人在运动过程中对仪表的识别精度和速度,能有效解决巡检机器人在目标检测阶段存在的问题。 Objective To propose a object detection method based on an improved YOLOv8 model to solve the problems of the inspection robot in low accuracy for recognizing pointer-type or obscured meters.Methods Firstly,a YOLOv8 model was chosen as the foundation object detection model,based on which the coordinate attention(CA)mechanism was introduced to enhance the model's understanding of the spatial structure of the input data over long distances;secondly,the original complete IoU(CIoU)loss function was replaced by an efficient IoU(EIoU)loss function to accelerate the convergence of the model's detection frame;finally,the soft non-maximum suppression(Soft-NMS)function took the place of the traditional NMS method to suppress the redundant bounding box smoothly and further improve the detection accuracy.The improved YOLOv8 model(YOLOv8nxt model)was compared with the YOLOv8n model to verify its efficacy for object detection.Results The YOLOv8nxt model with a size of 6.2 M had the position loss decreased by 1.3%,mAP_0.5:0.95 increased by 1.7%,detection accuracy raised by 0.87%and detection time prolonged by only 0.2 ms when comparted with the YOLOv8n model.Conclusion The improved YOLOv8 model-based object detection method enhances the accuracy and speed of the inspection robot's recognition of meters during movement,and can effectively solve the problems of the inspection robot in the object detection stage.
作者 殷北辰 王子健 程智 徐新喜 YIN Bei-chen;WANG Zi-jian;CHENG Zhi;XU Xin-xi(Systems Engineering Institute of Academy of Military Science,People's Liberation Army,Tianjin 300161,China)
出处 《医疗卫生装备》 CAS 2024年第3期1-8,共8页 Chinese Medical Equipment Journal
关键词 YOLOv8模型 巡检机器人 目标检测 注意力机制 YOLOv8 model inspection robot object detection attention mechanism
  • 相关文献

参考文献4

二级参考文献42

  • 1柳长安,叶文,吴华,杨国田.融合地理位置信息的电力杆塔检测[J].华中科技大学学报(自然科学版),2013,41(S1):208-210. 被引量:12
  • 2Quigley H.,Broman A. T.,王文军(译).2010—2020年世界范围内青光眼患者数量的评估研究[J].世界核心医学期刊文摘(眼科学分册),2006,2(6):61-62. 被引量:113
  • 3刘杏,曾阳发,夏园玲,王涛,钟毅敏,肖辉.眼前段光学相干断层扫描仪测量前房深度与晶状体厚度的一致性和可重复性研究[J].中国实用眼科杂志,2007,25(6):600-603. 被引量:13
  • 4中华人民共和国国务院.病原微生物实验室生物安全管理条例,2004.11.
  • 5中国科学院武汉文献情报中心.生物安全发展报告:科技保障安全.北京:科学出版社,2014.
  • 6Sulkin S E, Pike R M . Viral infections contracted in the laboratory. New England Journal of Medicine, 1949, 241 (5) 205-213.
  • 7Whittaker R H. New concepts of kingdoms or organisms Evolutionary relations are better represented by new classifications than by the traditional two kingdoms. Science 1969, 163 (3863): 150-160.
  • 8WHO. Laboratory Biosafety Manual (The first edition). Geneva: WHO, 1983.
  • 9中华人民共和国国家发展和改革委员会.国家高级别生物安全实验室建设规划.北京,2004.
  • 10中华人民共和国科学技术部和国家认证认可监督管理委员会.实验室生物安全通用要求.北京,2004.

共引文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部