期刊文献+

一种以科研团队为服务对象的科研人员推荐模型

A Researcher Recommendation Model for Research Teams
原文传递
导出
摘要 【目的】本研究提出一种针对科研团队的深度学习组推荐模型,旨在满足科研团队招聘科研人员的需求,提高推荐效率。【方法】首先应用自注意力机制学习团队的语义表示,接着采用神经协同过滤模型学习团队与科研人员间的非线性关系,最终得到团队与人员的契合程度作为推荐的依据。【结果】实验结果显示,在公共数据集上,与基线模型相比,本文模型在推荐正确率和F1值上分别提高10.22和10.25个百分点,在实际推荐场景中表现优异。【局限】深度学习模型的参数量较小,仍有优化空间。【结论】本文模型可以有效提高科研人员招聘的效率,有助于科研服务机构提升服务水平,满足科研团队招聘人员的需求。 [Objective]This study proposes a deep learning-based recommendation model for research teams to meet recruitment needs and improve recommendation efficiency.[Methods]Firstly,we applied the self-attention mechanism to learn the semantic representation of teams.Then,we employed the neural collaborative filtering model to study the nonlinear relationship between teams and researchers.Finally,we obtained the degree of fit between teams and individuals as the basis for recommendation.[Results]Compared with the baseline models,the proposed one increased the recommendation accuracy and F1 value by 10.22% and 10.25%,respectively,on public datasets.It performed exceptionally well in real-world recommendation scenarios.[Limitations]The parameter size of the deep learning model is relatively small,leaving room for optimization.[Conclusions]The proposed model can effectively enhance the efficiency of recruiting researchers,helping research service institutions improve their services and satisfy the needs of research teams.
作者 刘成山 李普国 汪圳 Liu Chengshan;Li Puguo;Wang Zhen(School of Economics and Management,Xidian University,Xi’an 710126,China;Chang’an University Library,Xi’an 710064,China)
出处 《数据分析与知识发现》 EI CSCD 北大核心 2024年第3期132-142,共11页 Data Analysis and Knowledge Discovery
基金 科技创新2030—“新一代人工智能”重大项目(项目编号:2021ZD0113702)的研究成果之一。
关键词 组推荐 科研团队 科研人员推荐 自注意力机制 Group Recommendation Scientific Research Teams Researcher Recommendation Self-attention Mechanism
  • 相关文献

参考文献15

二级参考文献144

共引文献202

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部