期刊文献+

多维度注意力机制下网络舆情视觉情感识别模型及识别效果研究

Data Analysis and Knowledge Discovery Research on Recognition Model and Recognition Effect of Network Public Opinion Visual Emotion under Multi-Dimensional Attention Mechanism
原文传递
导出
摘要 【目的】为弥补当前视觉情感分析研究的不足,构建基于ResNet34改进的情感分析模型,分析和提高图像情感分类的精度。【方法】首先基于ResNet34架构建立视觉情感识别模型,然后通过融合CBAM模块和Non-Local模块,对情感特征进行学习、表示,最后利用以上模型对情感特征进行分类识别,并且与VGG16和ResNet50模型进行对比以验证构建模型的优越性及精度。【结果】通过实验验证所构建的模型的识别效果,研究结果表明模型的准确率、精确率、召回率和F1值分别达到84.42%、84.10%、83.70%和83.80%。与基线模型进行对比,所提模型的准确率相比于VGG16和ResNet50模型分别提升4.17和3.44个百分点,F1值分别提升4.20和3.30个百分点。【局限】测试的数据集规模相对不大,未采用皮尔曼系数等计算标注的效果,未将基于视觉的情感分类算法进行比较。【结论】从视觉情感分析视角对情感识别模型进行优化,补充了情感计算的分析模态,为舆情信息情感特征提取和分析提供了支撑。 [Objective]To fill the current deficiency in visual emotional analysis research,a ResNet34-based improved emotion analysis model was constructed to analyze and improve the accuracy of image emotion classification.[Methods]Firstly,a visual emotion recognition model was established based on the ResNet34.Then,by integrating the CBAM module and Non-Local module,emotion features were learned and represented.Finally,the above model was used to classify and recognize emotional features,and compared with VGG16 and ResNet50 models.[Results]The recognition effect of the constructed model was verified through experiments,and the research results showed that the accuracy,precision,recall,and F1 score of the model reached 84.42%,84.10%,83.70%,and 83.80% respectively.Compared with the baseline models of the VGG16 and ResNet50,the accuracy of the proposed model was improved by 4.17% and 3.44%,and the F1 score was improved by 4.20% and 3.30%.[Limitations]The scale of the test dataset is relatively small,the effectiveness of annotation was not calculated using metrics such as the Pearson correlation coefficient,and a comparison was not made with visualbased emotion classification algorithms.[Conclusions]From the perspective of visual emotional analysis,optimizing the emotion recognition model supplements the analysis mode of emotional computation,providing support for the extraction and analysis of emotional features in public opinion information.
作者 王晰巍 王秋月 蔡宏天 Wang Xiwei;Wang Qiuyue;Cai Hongtian(School of Business and Management,Jilin University,Changchun 130022,China;Research Center for Big Data Management,Jilin University,Changchun 130022,China;Cyberspace Governance Research Center,Jilin University,Changchun 130022,China;School of Economics,Jilin University,Changchun 130022,China;School of Software,Jilin University,Changchun 130022,China)
出处 《数据分析与知识发现》 EI CSSCI CSCD 北大核心 2024年第3期156-167,共12页 Data Analysis and Knowledge Discovery
基金 国家社会科学基金重大项目(项目编号:18ZDA310)的研究成果之一。
关键词 网络舆情 视觉 情感识别 Internet Public Opinion Visual Emotion Recognition
  • 相关文献

参考文献11

二级参考文献83

  • 1马娜,张智雄,吴朋民.基于特征融合的术语型引用对象自动识别方法研究[J].数据分析与知识发现,2020,4(1):89-98. 被引量:9
  • 2Xin Hu,Jingjing Chen,Fei Wang,Dan Zhang.Ten challenges for EEG-based affective computing[J].Brain Science Advances,2019,5(1):1-20. 被引量:9
  • 3刘怀军,车万翔,刘挺.中文语义角色标注的特征工程[J].中文信息学报,2007,21(1):79-84. 被引量:39
  • 4唐慧丰,谭松波,程学旗.基于监督学习的中文情感分类技术比较研究[J].中文信息学报,2007,21(6):88-94. 被引量:136
  • 5BALAHUR A, STEINBERGER R, KABADJOV M, et al. Sentiment analysis in the news[ J]. Infrared Physics and Technology, 2014, 65:94-102.
  • 6JIANG Long, YU Mo, ZHOU Ming, et al. Target-dependent twitter sentiment classification[ C ]//Proc of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Techno- logies . 2011.
  • 7王金刚,于潇,宋丹丹,等.基于中文bag-of-opinions方法的微博情感分析[C]//NLP&CC.2012.
  • 8PAK A, PAROUBEK P. Twitter as a corpus for sentiment analysis and opinion mining [ C ]//Proc of International Conference on Lan- guage Resources and Evaluation. 2010.
  • 9TABOADA M, BROOKE J, TOFILOSKI M, et al. Lexicon-based methods for sentiment analysis [ J ]. Computational Linguistics, 2011, 37(2) : 267-307.
  • 10LUCIANO B, FENG Jun-lan. Robust sentiment detection on twitter from biased and noisy data[ C]//Proc of the 23rd International Con- ference on Computational Linguistics. 2010.

共引文献219

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部