摘要
揭示珠江流域碳排放时空演化和空间集聚特征,对推进流域地区低碳可持续发展具有重要意义。耦合夜间灯光数据、土地利用数据和能源消费数据构建碳排放估算模型,从流域、城市和网格尺度分析了珠江流域碳排放空间变化趋势,使用探索性时空数据分析和修正引力模型探讨了城市碳排放时空动态变化和空间关联特征。结果表明:珠江流域碳排放总量从2005年的29497万t增长至2019年的31877万t,东莞、深圳和广州始终是高碳排放城市。网格尺度上高碳排放集聚区以珠江三角洲地区为核心向周边扩张,中上游高碳排放区呈点状分布。珠江流域碳排放存在正向空间相关性,空间交互效应呈下降趋势。时空动态分析显示相邻城市碳排放存在正向协同发展趋势。城市碳排放关联强度均值由5.93增长至18.97,核心节点城市对外辐射能力得到提升,碳排放关联网络结构呈集中化趋势。该方法耦合多源数据开展碳排放估算研究,具有潜在的实用价值,可为碳排放时空动态分析和低碳减排策略制定提供参考。
To investigate the spatiotemporal patterns and agglomeration characteristics of carbon emissions in the Pearl River Basin,we constructed a carbon emission estimation model by coupling multi-source data.The spatiotemporal dynamics and spatial correlation characteristics of urban carbon emissions were explored using exploratory spatiotemporal data analysis and modified gravity modeling.The findings indicate that the total carbon emissions in the Pearl River Basin increased from 312.67 million tons to 336.54 million tons.Dongguan,Shenzhen,and Guangzhou consistently stood out as cities with the highest carbon emissions.On the grid scale,the high-value carbon emission agglomeration expands towards the periphery,with the Pearl River Delta region serving as the core,whereas the high-value carbon emission area in the middle and upper reaches is characterized by a point-like distribution.Carbon emissions in the Pearl River Basin show a positive spatial correlation,although there is a decreasing trend in the spatial interaction effect.Furthermore,there is a positive synergistic trend among neighboring cities in terms of carbon emissions.The average linkage intensity of urban carbon emissions increases from 5.93 to 18.97,indicating strengthened connectivity among cities.The carbon emissions network structure shows a trend towards centralization.This method incorporates carbon sources and sinks into the calculation process,has potential practical value,and can support the development of a carbon reduction strategy.
作者
张斌
卫丹琪
丁乙
姜洪涛
尹剑
ZHANG Bin;WEI Danqi;DING Yi;JIANG Hongtao;YIN Jian(West China Modernization Research Center,Guizhou University of Finance and Economics,Guiyang 550025,China;College of Big Data Application and Economics,Guizhou University of Finance and Economics,Guiyang 550025,China;Northeast Asian Studies College,Jilin University,Changchun 130012,China)
出处
《地球科学进展》
CAS
CSCD
北大核心
2024年第3期317-328,共12页
Advances in Earth Science
基金
贵州省高校人文社会科学研究年度项目(编号:2023GZGXRW164)资助。
关键词
土地利用数据
珠江流域
碳排放
遥感估算
Land use data
Pearl River Basin
Carbon emissions
Remote sensing estimation