期刊文献+

连续广义框架的ε-近似

ε-approximations of continuous generalized frames
原文传递
导出
摘要 讨论Hilbert空间中连续广义框架理论,引入了连续广义框架的ε-近似、ε-接近的概念,建立二者之间的联系,得到一定条件下连续广义框架ε-近似也是连续广义框架,但有趣的是,紧连续广义框架ε-近似不可能是紧连续广义框架;给定一个连续广义框架的对偶框架及ε-接近,可以找到其ε-接近的一个对偶连续广义框架使得两个对偶框架彼此靠近。 This paper addresses the continuous generalized frame theory in Hilbert spaces.We introduce the concepts ofε-approximation,ε-closeness of continuous generalized frames,and establish a link betweenε-approximation andε-closeness.We present that theε-approximations of continuous generalized frames are continuous generalized frames under certain conditions.Interestingly,theε-approximations of tight continuous generalized frames can not be tight continuous generalized frames.Given a dual frame andε-closeness of a continuous generalized frame,one can find a dual continuous generalized frame of itsε-closeness that makes the two dual continuous generalized frames close to each other.
作者 张伟 ZHANG Wei(School of Mathematics and Information Sciences,Henan University of Economics and Law,Zhengzhou 450046,Henan,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2024年第4期73-80,共8页 Journal of Shandong University(Natural Science)
基金 河南省高等学校重点科研项目(21A110004) 河南省科技攻关项目(242102210049)。
关键词 连续广义框架 连续广义对偶框架 ε-近似 continuous generalized frames dual continuous generalized frames -approximation
  • 相关文献

参考文献2

二级参考文献63

  • 1YANG Deyun & ZHOU Xingwei Department of Information & Technology, Nankai University, Tianjin 300071, China,Department of Mathematics, Nankai University, Tianjin 300071, China,Department of Computer Science, Taishan College, Taian 271000, China.Irregular wavelet frames on L^2 (R^n)[J].Science China Mathematics,2005,48(2):277-287. 被引量:4
  • 2LI YunZhang,LIAN QiaoFang.Gabor systems on discrete periodic sets[J].Science China Mathematics,2009,52(8):1639-1660. 被引量:4
  • 3Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Math. Soc., 1952, 72: 341-366.
  • 4Daubechies I., Grossmann A., Meyer Y., Painless nonorthogonal expansions, J. Math. Phys., 1986, 27: 1271-1283.
  • 5Ferreira P. J. S. G., Mathematics for multimedia signal processing II: Discrete finite frames and signal reconstruction, in: J.S. Byrnes (Ed.), Signal processing for Multimedia, IOS Press, 1999, 35-54.
  • 6Benedetto J. J., Heller W., Irregular sampling and theory of frames, I, Note Mat. X., 1990, 103-125, Suppl. n.1.
  • 7Dudey Ward N. E., Partington J. R., A construction of rational wavelets and frames in Hardy-Sobolev space with applications to system modelling, SIAM J. Control Optim., 1998, 36: 654-679.
  • 8Eldar Y., Forney Jr G. D., Optimal tight frames and quantum measurement, IEEE Trans. Inform. Theory, 2002, 48: 599-610.
  • 9Chan R. H., Riemenschneider S. D., Shen L., et al., Tight frame: An efficient way for high-resolution image reconstruction, Appl. Comput. Harmon. Anal., 2004, 17: 91-115.
  • 10Holmes R. B., Paulsen V. I., Optimal frames for erasures, Linear Algebra Appl., 2004, 377: 31-51.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部