期刊文献+

基于四元数表示的GraphSLAM位姿初始化算法

Initialization Techniques of Pose Optimization Using the Quaternion Representation for Graph SLAM
原文传递
导出
摘要 位姿估计问题本质上是一个非凸且NP-难问题,难以求解的原因在于位姿中包含特殊正交群,且往往拥有一个较差的初始值。针对此问题,提出了一种基于图的即时定位与建图技术位姿初始化算法。首先,使用两阶段算法将位姿估计问题构建的最大似然估计方程重新拆分为两个独立的子问题,即基于四元数表示的旋转平均问题和无约束的平移向量平均的线性方程问题。然后,通过迹松弛方式将非凸问题转化为线性方程问题。最后,结合平移向量计算出初始化的位姿。仿真实验表明,在高噪声的数据集中,所提方法比基于生成树的目标函数值降低了至少1个数量级,能够鲁棒地为位姿估计问题提供一个良好的初始值。 Pose estimation is essentially a non-convex and NP-hard problem,which is difficult to solve due to the inclusion of the special orthogonal group and often comes with a poor initial value.This paper proposes a Graph SLAM pose initialization algorithm based on quaternion representation.Firstly,a two-stage algorithm is used to decompose the maximum likelihood estimation equation constructed for pose estimation into two independent subproblems,namely the rotation averaging problem based on quaternion representation and linear equation problem of unconstrained average translation vectors.Then,the non-convex problem is transformed into a linear equation problem through trace relaxation.Finally,the initial pose is calculated in combination with the translation vectors.Sim-ulation results show that this method reduces the error value by an order of magnitude compared to classic methods in datasets with noise,and can robustly provide a good initial pose for pose estimation problems.
作者 丰雨轩 方浩 FENG Yuxuan;FANG Hao(School of Electronics and Information Engineering,Tongji University,Shanghai 200092,China;School of Automation,Beijing Institute of Technology,Beijing 100074,China;Department of Strategic and Cross-Disciplinary Studies,Peng Cheng Laboratory,Shenzhen 518038,China)
出处 《无人系统技术》 2024年第2期65-72,共8页 Unmanned Systems Technology
基金 国家自然科学基金(62133002)。
关键词 即时定位与建图技术 位姿估计 四元数 最大似然估计 两阶段算法 旋转平均 迹松弛 Simultaneous Localization and Mapping Pose Estimation Quaternion Maximum Likelihood Estimation Two-stage Algorithm Rotation Averaging Trace Relaxation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部