期刊文献+

基于聚类和GBDT的镀锌钢卷力学性能预测

Prediction of mechanical properties for hot dip galvanized steel coil based on clustering and GBDT
下载PDF
导出
摘要 热镀锌钢卷力学性能影响因素之间关系复杂,限制了模型精度的提升。采用k-means算法利用化学成分属性对镀锌钢卷数据集进行聚类,将数据聚成三种模式簇实现样本的优选。利用梯度提升树算法,开展各模式数据集与不划分模式的全数据集下的力学性能建模研究,最后结合网格搜索与交叉验证方法进行模型参数优化。研究结果表明,分模式下模型MAE误差相比于全数据集建模平均减小0.85 MPa。参数优化后,各模式下MAE误差平均减少5.19 MPa,RMSE误差平均减少3.63 MPa,提高了预测模型精度。 The relationships among the factors affecting the mechanical properties of hot-dip galvanized steel coils are complicated,which limits the improvement of the model accuracy.In this paper,the k-means algorithm is used to cluster the galvanized steel coil data set by using the chemical composition attributes,and the data set is clustered into three pattern clusters to filter samples.The gradient boosting tree algorithm is used to research on the mechanical performance modeling of each pattern data set and the full data set without pattern division.Finally,the model parameters are optimized by combining grid search and cross-validation methods.The results show that the average MAE error of the model in the sub patterns is reduced by 0.85 MPa compared to the full data set modeling.After the parameters are optimized,the average MAE error in each mode is reduced by 5.19 MPa,and the average RMSE error is reduced by 3.63 MPa,which improves the accuracy of the prediction model.
作者 王伟 赵飞 匡祯辉 白振华 刘勇 WANG Wei;ZHAO Fei;KUANG Zhenhui;BAI Zhenhua;LIU Yong(College of Mechanical Engineering&Automation,Fuzhou University,Fuzhou 350108,China;Collaborative Innovation Center of High-End Equipment Manufacturing in Fujian,Fuzhou 350108,China;Changchun FAWSN Group Co.,Ltd.,Changchun 130011,China)
出处 《重型机械》 2024年第2期54-58,共5页 Heavy Machinery
基金 福建省科技计划项目(2018H0015)。
关键词 热镀锌钢卷 K-MEANS 力学性能建模 梯度提升树 网格搜索法 hot-dip galvanized steel coils k-means modeling of mechanical properties gradient boosting decision tree grid search
  • 相关文献

参考文献3

二级参考文献37

  • 1张小强,朱中梁,范平志,何明星.基于序列互相关特性和SVM的入侵检测研究[J].铁道学报,2007,29(3):113-117. 被引量:3
  • 2PAZHOUMAND D H,YAGHOOBI M. A New Ap-proach in Road Sign Recognition Based on Fast FractalCoding[J]. Neural Computing and Applications, 2013,22(3-4).615-625.
  • 3XU S. Robust Traffic Sign Shape Recognition Using Geo-metric Matching[J]. IET Intelligent Transport Systems,2009, 3(1):10-18.
  • 4ALBERTO B,PIETRO C,PAOLO M, et al. Real TimeRoad Signs Recognition [ C]// Proceedings of the 2007IEEE Intelligent Vehicles Symposium. New York: IEEEPress, 2007:981-986.
  • 5STALLKAMP J, SCHLIPSING M, SALMEN J, et al.Man vs. Computer: Benchmarking Machine Learning Al-gorithms for Traffic Sign Recognition [J]. Neural Net-works ,2012, 32:323-332.
  • 6CIRESAN D,MEIER U, MASCI J, et al. Multi-columnDeep Neural Network for Traffic Sign Classification [J].Neural Networks, 2012,32:333-338.
  • 7GARCIA-GARRIDO M A, SOTELO M A, MARTM GE. Fast Traffic Sign Detection and Recognition UnderChanging Lighting Conditions [ C]//Proceedings of the2006 IEEE Intelligent Transportation Systems Conference.New York: IEEE Press, 2006:811-816.
  • 8SATURNINO M, SERGIO L, PEDRO G,et al. Road-sign Detection and Recognition Based on Support VectorMachines[J]. IEEE Transactions on Intelligent Transpor-tation Systems, 2007,8(2) :264-278.
  • 9KUMARASWAMY R, PRABHU L V,SUCHITHRA K,et al. SVM Based Classification of Traffic Signs for Real-time Embedded Platform[J]. Communications in Comput-er and Information Science, 2011,193(3) : 339-348.
  • 10YANG J,DAVID Z,ALEJANDRO F,et al. Two-di-mensional PCA: A New Approach to Appearance-basedFace Representation and Recognition[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence,2004, 28(1):131-137.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部