期刊文献+

一类具有资源约束的SIS流行病模型的随机动力学

Stochastic dynamics of an SIS epidemic model with resource constraints
下载PDF
导出
摘要 为研究环境随机性对流行病传播动态的影响,利用随机微分方程组构建了一类具有资源约束的随机易感者-感染者-易感者(SIS)流行病动力学模型.首先,通过构造Lyapunov函数,证明了随机流行病模型全局正解的存在性和唯一性;其次,采用数值模拟仿真分析了流行病在不同场景下的灭绝概率和灭绝时间.研究结果表明,环境随机性的强度与流行病的灭绝概率呈正相关关系,与流行病的灭绝时间呈负相关关系.特别地,当感染者规模接近吸引盆地的边界时,流行病更容易发生灭绝.该理论框架可拓展到其他流行病模型的研究中. To investigate the influence of environmental stochasticity on the dynamics of epidemic spread,a stochastic susceptible-infectious-susceptible(SIS)epidemiological model with resource constraints is constructed by using stochastic differential equations.Firstly,the existence and uniqueness ofthe global positive solutions of the stochastic epidemic model are proven by constructing Lyapunov function.Utilizing numerical simulation methods,the probability and duration of epidemic extinction are analyzed under various scenarios.The results show that the intensity of environmental stochasticity ispositively correlated with the extinction probability of epidemic,and negatively correlated with the extinction time of epidemic.Specifically,when thescale of infectives approaches the boundary of an attractor basin,epidemic extinction is more likely to occur.The theoretical framework proposed inthis study can be extended to the study of other epidemic models.
作者 李争意 冯涛 LI Zhengyi;FENG Tao(School of Mathematical Science,Yangzhou University,Yangzhou 225002,China)
出处 《扬州大学学报(自然科学版)》 CAS 2024年第2期67-72,78,共7页 Journal of Yangzhou University:Natural Science Edition
基金 江苏省自然科学基金(22KJB110006) 扬州大学大学生科创基金项目(XCX20230237) 江苏高校品牌专业建设工程资助项目(数学与应用数学,PPZY2015B109)。
关键词 流行病模型 灭绝 环境随机性 资源约束 epidemic model extinction environmental stochasticity resource constraints
  • 相关文献

参考文献1

二级参考文献50

  • 1Season review of 2009-2010, Algerian Influenza Sentinel Surveillance, National Institute of Public Health, Algeria, 2014.
  • 2B. Bollobas, Modern Graph Theory. Springer, 1998.
  • 3R Carrington, J. Scott, and S. Wasserman, Models and Methods in Social Network Analysis. Cambridge University Press, 2004.
  • 4D. J. Watts and S. H. Strogatz, Collective dynamics of "small-world" networks, Nature, vol. 393, pp. 440-442 1998.
  • 5M. Samsuzzoha, M. Singh, and D. Lucy, Parameter estimation of influenza epidemic model, AppliedMathematics and Computation, vol. 220, pp. 616-629, 2013.
  • 6S. Cauchemez, R Horby, A. Fox, L. Q. Mai, L. T. Thanh, E Q. Thai, L. N. M. Hoa, N. T. Hien, and N. M. Ferguson, Influenza infection rates, measurement errors and the interpretation of paired serology, PLoS Pathog, vol. 8, no. 12, p. e1003061, 2012. doi: 10.1371/journal.ppat.1003061.
  • 7R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, 1991.
  • 8A. Lavenu, A. J. Valleron, and E Can'at, Exploring crossprotection between influenza strains by an epidemiological model, Virus Research, vol. 103, pp. 101-105, 2004.
  • 9M. E C. Gomes and S. Gonalves, SIR model with general distribution function in the infectious period, Physica A: Statistical Mechanics and its Applications, vol. 388, pp. 3133-3142, 2009.
  • 10K. L. Nichol, K. Tummers, A. Hoyer-Leitzel, J. Marsh, M. Moynihan, and S. McKelvey, Modeling seasonal influenza outbreak in a closed college campus: Impact of pre-season vaccination, in-season vaccination and holidays/breaks, PLoS ONE, vol. 5, 2010. doi: 10.1371/journal.pone.0009548.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部