期刊文献+

基于增强长短期记忆网络的空气处理系统故障诊断

Fault diagnosis of air handling system based on enhanced long short-term memory network
下载PDF
导出
摘要 暖通空调空气处理系统具有很强的动态时变特性和批次动态特性,为了能有效地诊断所检测到的故障模式,本文构建了一种基于增强长短期记忆(LSTM)网络、能高效识别待辨识故障数据稀疏慢特征的故障诊断模式。在ASHRAE研究项目RP-1312实验数据集上进行的案例研究表明,与相关的故障识别方法相比,该方法在识别空气处理系统故障方面有较大的改进。 HVAC air handling systems have strong dynamic time-varying and batch-dynamic characteristics.In order to effectively diagnose the detected fault patterns,this paper constructs a fault diagnosis mode based on enhanced long short-term memory(LSTM)network,which can efficiently identify the sparse and slow features of the fault data.A case study based on the ASHRAE research project RP-1312 experimental dataset shows that the proposed method has a significant improvement in identifying air handling system faults compared with the related fault identification methods.
作者 陆由付 高鹤 冯雅卫 Lu Youfu;Gao He;Feng Yawei(Shandong High-speed Group Co.,Ltd.,Jinan;Shandong Zhengchen Technology Co.,Ltd.,Jinan)
出处 《暖通空调》 2024年第5期58-66,共9页 Heating Ventilating & Air Conditioning
关键词 故障诊断 空气处理系统 动态时变特性 批次动态特性 慢特征 长短期记忆网络 fault diagnosis air handling system dynamic time-varying characteristic batch-dynamic characteristic slow feature long short-term memory(LSTM)network
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部