摘要
暖通空调空气处理系统具有很强的动态时变特性和批次动态特性,为了能有效地诊断所检测到的故障模式,本文构建了一种基于增强长短期记忆(LSTM)网络、能高效识别待辨识故障数据稀疏慢特征的故障诊断模式。在ASHRAE研究项目RP-1312实验数据集上进行的案例研究表明,与相关的故障识别方法相比,该方法在识别空气处理系统故障方面有较大的改进。
HVAC air handling systems have strong dynamic time-varying and batch-dynamic characteristics.In order to effectively diagnose the detected fault patterns,this paper constructs a fault diagnosis mode based on enhanced long short-term memory(LSTM)network,which can efficiently identify the sparse and slow features of the fault data.A case study based on the ASHRAE research project RP-1312 experimental dataset shows that the proposed method has a significant improvement in identifying air handling system faults compared with the related fault identification methods.
作者
陆由付
高鹤
冯雅卫
Lu Youfu;Gao He;Feng Yawei(Shandong High-speed Group Co.,Ltd.,Jinan;Shandong Zhengchen Technology Co.,Ltd.,Jinan)
出处
《暖通空调》
2024年第5期58-66,共9页
Heating Ventilating & Air Conditioning
关键词
故障诊断
空气处理系统
动态时变特性
批次动态特性
慢特征
长短期记忆网络
fault diagnosis
air handling system
dynamic time-varying characteristic
batch-dynamic characteristic
slow feature
long short-term memory(LSTM)network