摘要
本文旨在找到所有可以表示为两个奶牛数之和的好奇数。奶牛数列满足三阶递归关系:N_(n)=N_(n-1)+N_(n-3)(n≥3)及N_(0)=0、N_(1)=N_(2)=1。针对奶牛数之和为好奇数的问题,建立相应丢番图方程,将方程整理成不同形式,通过对数线性型求出各个未知量的一个较大的上界;再通过缩减方法,把各个未知量的较大上界缩减为一个可计算上界;最后,根据未知量的可计算上界,应用Mathematica得出所有可表示为两个奶牛数之和的好奇数。
This paper aims to identify all curious numbers that can be represented as the sum of two Narayana's cows numbers.Narayana’s cows sequence satisfies the third-order linear recurrence relation N_(n)=N_(n-1)+N_(n-3)(n≥3) and N_(0)=0、N_(1)=N_(2)=1.For the problem of the sum of Narayana’s cows numbers being a curious num-bers,a corresponding Diophantine equation is established.Different forms of the equation are arranged,and a larger upper bound for each unknown variable is obtained through linear forms in logarithms.Then,using the reduction method,the upper bound of each unknown variable is reduced to a computable upper bound.Final-ly,based on the computable upper bound of the unknown variables,Mathematica is used to find all curious numbers expressible as the sum of two Narayana's cows numbers.
作者
王佳文
杨鹏
刘佳奇
任政
WANG Jiawen;YANG Peng;LIU Jiaqi;REN Zheng(School of Science,University of Science and Technology Liaoning,Anshan 114051,China)
出处
《辽宁科技大学学报》
CAS
2024年第1期67-74,共8页
Journal of University of Science and Technology Liaoning
基金
辽宁省自然科学基金资助项目(2022-MS-356)。
关键词
奶牛序列
纯位数
好奇数
对数线性型
缩减方法
Narayana’s cows sequence
repdigits
curious numbers
linear forms in logarithms
reduction method