期刊文献+

融合情感词典与深度学习的文本情感分析研究

Research on Text Sentiment Analysis Based on Sentiment Dictionary and Deep Learning
下载PDF
导出
摘要 文本情感分析是自然语言处理领域内的重点研究方向。当前Word2vec词向量结合神经网络的深度学习模型在中文文本情感分析研究中取得了不错的成绩。然而仅使用词向量模型作为文本表示进行模型学习时,会丢失当前词的情感信息。故论文提出一种基于情感词典结合双向长短期记忆网络和注意力机制的文本情感分析模型SABLSTM。该模型在酒店数据集上的分类准确率是93.17%,比仅结合了注意力机制的双向长短期记忆网络模型的准确率提升了1.56%。由此可见,以情感词典作为先验知识进行模型训练,可以提升中文文本情感分析任务的效果。 The sentiment analysis is a crucial part of natural language processing.At present,the deep learning model of word embedding combined with neural network has achieved good results in the research of Chinese text sentiment analysis.However,the emotional information of the current word will be lost when using word embedding model only as text representation to learn the mod-el.In this work,a text sentiment analysis model SABLSTM is proposed,which is based on sentiment dictionary combined with bidi-rectional long short-term memory network and attention mechanism.The precision of this model on the hotel dataset is 93.17%,and it has achieved a great improvement of 1.56%compared with the model integrated the bidirectional long short-term memory network structure with attention mechanism.Therefore,the model training with sentient lexicon as prior knowledge can improve the effect of Chinese text sentiment analysis task.
作者 王浩畅 王宇坤 Marius Gabriel Petrescu WANG Haochang;WANG Yukun;MARIUS Gabriel Petrescu(School of Computer&Information Technology,Northeast Petroleum University,Daqing 163318;Petroleum-Gas University of Ploiesti,Ploiesti 100680)
出处 《计算机与数字工程》 2024年第2期451-455,共5页 Computer & Digital Engineering
基金 国家自然科学基金项目(编号:61402099,61702093)资助。
关键词 情感分析 情感词典 注意力机制 双向长短期记忆网络 sentiment analysis sentiment lexicon attention mechanism bidirectional long short-term memory network
  • 相关文献

参考文献3

二级参考文献36

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 2Franco Salvetti, Stephen Lewis, Christoph Reichenbach. Automatic Opinion Polarity Classification of Movie Reviews[J]. Colorado Research in Linguistics, 2004, Volume 17, Issue 1.
  • 3Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 79 86.
  • 4Aidan Finn, Nicholas Kushmerick, and Barry Smyth. Genre classification and domain transfer for information filtering[A]. In: Fabio Crestani, Mark Girolami, and Cornelis J. van Rijsbergen, editors, Proceedings of ECIR-02, 24th European Colloquium on Information Retrieval Research, Glasgow, UK. Springer Verlag, Heidelberg, DE.
  • 5Janyce Wiebe, Rebecca Bruce, Matthew Bell, Melanie Martin, and Theresa Wilson. A corpus study of evaluative and speculative language[A]. In: Proceedings of the 2nd ACL SIGdial Workshop on Discourse and Dialogue, 2001.
  • 6Alina Andreevskaia and Sabine Bergler. Mining Word-Net For a Fuzzy Sentiment: Sentiment Tag Extraction From WordNet Glosses[A].In: Proc. EACL-06, Trento, Italy, 2006.
  • 7Alistair Kennedy and Diana Inkpen. Sentiment Classification of Movie Reviews Using Contextual Valence Shifters[J]. Computational Intelligence, 2006,22 (2) 110-125.
  • 8P.D. Turney and M.L. Littman. Unsupervised learning of semantic orientation from a hundred-billion-word corpus[D]. Technical Report ERB-1094, National Research Council Canada, Institute for Information Technology, 2002.
  • 9P. Subasic and A. Huettner. Affect analysis of text using fuzzy semantic typing[A]. IEEE-FS, 9:483 496, Aug. 2001.
  • 10Hugo Liu, Henry Lieberman, and Ted Selker. A model of textual affect sensing using real-world knowl- edge[A]. In: Proceedings of the Seventh International Conference on Intelligent User Interfaces [C].2003. 125-132.

共引文献252

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部