期刊文献+

舰基无线通信组网节点优化部署模型仿真

Simulation of Optimal Deployment Model of Ship-based Wireless Communication Networking Nodes
下载PDF
导出
摘要 为了提高舰基无线通信组网传输性能,降低数据丢包率和误码率,提出基于多重轮换调度和自组织学习的舰基无线通信组网节点优化部署方法。构建舰基无线通信组网传输链路结构模型,结合链路拓扑结构的覆盖能力分析和传输信道特征分析,采用信道均衡调度方法实现对舰基无线通信组网传输层次结构化调度和扩频处理,采用多传感融合跟踪识别方法实现对通信组网节点的多重轮换调度。结合自组织神经网络学习和信道增益扩频处理实现对通信组网节点的优化部署设计,以误码率、丢包率和通信节点有效覆盖度等参数为测试指标进行仿真分析。仿真结果表明,采用该方法进行舰基无线通信组网节点部署设计,通信覆盖度较高,误码率和丢包率较低,提高了舰基无线通信组网的信道均衡能力和数据安全传输能力。 In order to improve the transmission performance of ship-based wireless communication networking and reduce the data packet loss rate and bit error rate,an optimal deployment method of ship-based wireless communication networking nodes based on multiple rotation scheduling and self-organizing learning is proposed.The transmission link structure model of ship-based wireless communication network is constructed.Combining with the coverage ability analysis of link topology and transmission chan⁃nel characteristics analysis,the structured scheduling and spread spectrum processing of ship-based wireless communication net⁃work transmission layer are realized by channel balanced scheduling method,and the multi-sensor fusion tracking and identifica⁃tion method is used to realize multi-rotation scheduling of communication network nodes.The optimal deployment design of commu⁃nication network nodes is realized by combining self-organizing neural network learning and channel gain spread spectrum process⁃ing.The simulation analysis is carried out with parameters such as bit error rate,packet loss rate and effective coverage of communi⁃cation nodes as test indicators.The simulation results show that this method has higher communication coverage,lower bit error rate and packet loss rate,and improves the channel equalization ability and data security transmission ability of ship-based wireless communication networking.
作者 徐新林 邓异 XU Xinlin;DENG Yi(No.91977 Troops of PLA,Beijing 100161;No.91640 Troops of PLA,Zhanjiang 524064)
机构地区 [ [
出处 《舰船电子工程》 2024年第2期91-95,共5页 Ship Electronic Engineering
关键词 舰基无线通信组网 节点 多重轮换 自组织神经网络 信道均衡 ship-based wireless communication networking node multiple rotation self-organizing neural network chan⁃nel equalization
  • 相关文献

参考文献9

二级参考文献65

  • 1韩嗣诚,朱晓荣,张秀贤.优化可扩展的拜占庭容错共识算法[J].物联网学报,2020(2):18-25. 被引量:6
  • 2徐磊,周藜莎,李仁俊,顾村锋.毫米波波束编码技术在无人机智能集群中的应用[J].航空学报,2020(S01):71-78. 被引量:2
  • 3Li, Gui-Sen, Wang, Wan-Liang, Yao, Xin-Wei.An Adaptive and Opportunistic Broadcast Protocol for Vehicular Ad Hoc Networks[J].International Journal of Automation and computing,2012,9(4):378-387. 被引量:6
  • 4张继伟,王平,朱勇发.通信处理器MPC852T的无线接入点的系统设计[J].单片机与嵌入式系统应用,2005,5(2):57-60. 被引量:1
  • 5Akyildiz I E Su W L, Sankarasubramaniam Y, et al. A survey on sensor networks[J]. IEEE Communications Magazine, 2002, 40(8): 102-114.
  • 6Spanos D E Saber R O, Murray M R. Approximate distri- buted Kalman filtering in sensor networks with quantifiable performance[C]. Proc of the 4th Int Symposium on Information Processing in Sensor Networks. Los Angeles: IEEE Press', 2005: 133-139.
  • 7Saber R O. Distributed Kalman filtering algorithms for sensor networks[C]. Proc of the 46th IEEE Conf on Decision and Control. New Orleans: IEEE Press, 2007: 5492-5498.
  • 8Saber R O, Jalalkamali E Coupled distributed estimation and control for mobile sensor networks[J]. IEEE Trans onAutomatic Control, 2012, 57(10): 2609-2614.
  • 9Stankovib S S, Stankovib M S, Stipanovib D M. Consensus based overlapping decentralized estimation with missing observations and communications faults[J]. Automatica, 2009, 45(6): 1397-1406.
  • 10Yu W W, Chen G R, Wang Z D, et al. Distributed consensus filtering in sensor networks[J]. IEEE Trans on Systems, Man and Cybernetics, Part B: Cynernetics, 2009, 39(6): 1568-1577.

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部