期刊文献+

基于RLC负载的二极管桥分数阶忆阻混沌电路仿真研究

Simulation Research of Diode Bridge Fractional Memristive Chaotic Circuit Based on RLC Load
下载PDF
导出
摘要 分数阶混沌系统因相较整数阶有着更为丰富的动力学行为,目前得到了广泛的关注。论文首先将蔡氏电路中的非线性电阻替换为一个二极管桥忆阻器构造了一个混沌电路,进行电路仿真,结果出现双涡卷混沌吸引子。其次,采用分数阶微积分原理,将忆阻器中的电容及电感推广为分数阶元件形式,验证该分数阶模型符合广义忆阻器的特征,研究了激励源幅值和频率对模型磁滞回线的影响。最后,将基于RLC二极管桥忆阻器的混沌电路中的整数阶忆阻器替换为该分数阶模型,得到其分数阶系统的模型,通过电路仿真验证了该电路在给定参数下仍表现出双涡卷混沌吸引子,进一步证明了理论分析的正确性和可行性。 The fractional order chaotic systems have received widespread attention because they have richer dynamic behavior than integer orders.In this paper,the nonlinear resistance in the Chua's circuit is replaced with a diode bridge memristor to con⁃struct a chaotic circuit,and the circuit simulation results show a double-scroll chaotic attractor.Secondly,the principle of fraction⁃al calculus is used to generalize the capacitance and inductance in the memristor to the form of fractional order components,and it is verified that the fractional order model conforms to the characteristics of generalized memristors.The influence of excitation source amplitude and frequency on the hysteresis loop of the model is described.Finally,the integer-order memristor in the chaotic circuit based on the RLC diode bridge memristor is replaced with the fractional order model to obtain the model of the fractional order sys⁃tem.The circuit simulation verifies that the circuit still exhibits a two-scroll chaotic attractor under the given parameters,which fur⁃ther proves the correctness and feasibility of the theoretical analysis.
作者 张哲源 吴朝俊 ZHANG Zheyuan;WU Chaojun(School of Electronics and Information,Xi'an Polytechnic University,Xi'an 710048)
出处 《舰船电子工程》 2024年第2期109-114,共6页 Ship Electronic Engineering
基金 陕西省科技厅自然科学基金研究计划一般项目(面上)(编号:2018IM5068)资助。
关键词 忆阻 RLC滤波器 混沌 分数阶 memristor RLC filter chaos fractional order
  • 相关文献

参考文献3

二级参考文献53

  • 1Chua L O 1971 IEEE Trans. Circ. Theory CT-18 507.
  • 2Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80.
  • 3Wang F Z, Helian N, Wu S, Lira M G, Guo Y and Parker M A 2010 IEEE Electron. Dev. Lett. 31 755.
  • 4Pershin Y V and Di Ventra M 2010 Neural Networks 23 881.
  • 5Pershin Y V and Di Ventra M 2010 IEEE Tr'ans. Circuits Sys. 1: Regular Papers 57 1857.
  • 6Pershin Y V and Di Ventra M 2011 Adv. Phys. 60 145.
  • 7Witrisal K 2009 Electron. Lett. 45 713.
  • 8Itoh M and Chua L O 2008 Int. J. Bifurc. Chaos 18 3183.
  • 9Muthuswamy B and Kokate P P 2009 IETE Tech. Rev. 26 415.
  • 10Bao B C, Liu Z and Xu J P 2010 Electron. Lett. 46 228.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部