摘要
为达到道路标识实时检测的要求,针对目前主流的目标检测算法在图像处理器上存在模型参数量大、实时性差、功耗大和成本高的问题,提出一种基于FPGA的道路标识实时检测方案。为减少参数量、提高检测速度,采用YOLOv3-tiny作为特征提取网络,进行权重参数的训练与优化;将模型浮点数参数量化为8位定点数,并将量化后的网络模型在FPGA上完成部署实验。实验结果表明,在Yolov3-tiny网络检测速率上,本系统对实验数据集的测试帧率可达到153 fps,功耗为4.92 W,峰值GOP/s为115GOP/s。该系统可以满足实时目标检测的要求,并且能够在低功耗的状态下实现系统的部署。
In order to meet the requirements of real-time detection of road signs,for the current mainstream target detection algorithms on the image processor there are a large number of model parameters,poor real-time performance,high power consumption and high cost,a real-time detection of road signs based on FPGA is proposed.In order to reduce the number of parameters and improve the detection speed,YOLOv3-tiny is used as the feature extraction network for the training and optimization of the weight parameters;the model floating-point parameters are quantized into 8-bit fixed-point numbers,and the quantized network model is used to complete the deployment experiments on the FPGA.The experimental results show that at the Yolov3-tiny network detection rate,the test frame rate of this system for the experimental dataset can reach 153 fps,the power consumption is 4.92 W,and the peak GOP/s is 115GOP/s.This system can satisfy the requirement of real-time target detection,and it can realize the deployment of the system under low power consumption.
作者
王新伟
丁红昌
曹国华
Wang Xinwei;Ding Hongchang;Cao Guohua(School of Mechanical Engineering,Changchun University of Science and Technology,Changchun 130022,China;Changchun University of Science and Technology Chongqing Research Institute,Chongqing 401135,China)
出处
《电子测量技术》
北大核心
2024年第4期113-119,共7页
Electronic Measurement Technology
基金
173计划技术领域基金(B类)(2022-JCJQ-JJ-0257)
重庆市自然科学基金(2022NSCQ-MSX0340)项目资助。