期刊文献+

Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane

原文传递
导出
摘要 In the physiological environment, nanoparticles(NPs) interact with proteins to form a protein-rich layer on the surface which is called "protein corona". Understanding and analyzing the formation process of protein corona and protein corona-nanoparticles is of great significance for biological related nano research. Many separation techniques have been used to analyze the composition of protein corona, but in situ analysis of protein corona is still absent. With the development of detection technology, sum frequency generation(SFG) is an effective instrument to analyze the surface protein structure and dynamic changes of protein corona in situ. In this work the molecular mechanism and surface structure effect of the interaction between nanoparticles with surface protein corona(S-NPP) and phospholipid membrane were studied. When S-NPP interacts with phospholipid membrane, the bond affinity network formed by the binding water can stabilize S-NPP around the lipid bilayer. In this process, S-NPP can be found wrapped in the hydration shell. This ultimately leads to a more moderate interaction between particles and phospholipid membrane.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期275-279,共5页 中国化学快报(英文版)
基金 the Southeast University and Nanjing Medical University Cooperation Project Scene Ray Co., Ltd. for the financial support founded by the National Key Reserch and Development Program of China (No.2017YFA0205304)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部