期刊文献+

基于深度学习的水面无人清理船目标检测综述

A Review of Target Detection for Unmanned Surface Cleaning Ships Based on Deep Learning
下载PDF
导出
摘要 水面目标识别对水资源环境具有重要意义。综合当前基于深度学习的目标检测方法的发展历程以及在水面中的应用情况,对水面目标检测数据集及检测方法进行了研究。首先介绍了目标检测网络的发展历程。接着,对当前常用目标检测方法进行总结,阐述水面常用的公开数据集及水面目标检测算法的实际应用。最后,对基于深度学习的水面目标检测提出今后的研究方向。 Water surface target recognition is of great significance to water resource environment.Based on the development history of deep learning-based target detection and its application in water surface,the data set and detection method of water surface target detection are studied.Firstly,the development of target detection network is introduced.Then,the current common target detection methods are summarized,and the common open data sets and the practical application of surface target detection algorithms are expounded.Finally,the future research direction of surface target detection based on deep learning is proposed.
作者 沈靖夫 张元良 刘飞跃 柳淳 SHEN Jing-fu;ZHANG Yuan-liang;LIU Fei-yue;LIU Chun(School of Ocean Engineering,Jiangsu Ocean University,Lianyungang 222005,China;School of Mechanical Engineering,Jiangsu Ocean University,Lianyungang 222005,China)
出处 《价值工程》 2024年第13期157-160,共4页 Value Engineering
关键词 深度学习 水面目标检测 水面数据集 deep learning surface target detection water surface data set
  • 相关文献

参考文献4

二级参考文献39

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部