期刊文献+

一类变系数空间滞后的混合地理加权回归模型

A mixed geographically weighted regression model with varying-coefficient spatial lag
下载PDF
导出
摘要 为解决因变量空间滞后存在的局域性问题,对现有常系数空间滞后的混合地理加权回归模型作了具有更广泛形式的拓展,提出一类变系数空间滞后的混合地理加权回归(MGWR-VSLR)模型。MGWR-VSLR模型实现了空间相关性与空间异质性融合,涵盖了绝大多数地理加权回归的模型形式,基于重构参数化方法和似然比检验分别给出模型的系数估计方法与显著性检验以及选取变系数的判别检验。在蒙特卡罗模拟与实际应用中,MGWR-VSLR模型均表现出优异的因变量拟合与预测能力。MGWR-VSLR模型的提出为定量化研究空间效应问题设定适宜的模型形式提供了支撑依据。 Spatial correlation and spatial heterogeneity are the theoretical basis of spatial econometrics.In order to solve the local problem of spatial lag of dependent variables,this study extended the existing mixed geographically weighted regression model with constant-coefficient spatial lag,and proposed a mixed geographically weighted regression model with varying-coefficient spatial lag.The mixed geographically weighted regression model with varying-coefficient spatial lag combines spatial correlation with spatial heterogeneity,and covers most of the model forms of geographically weighted regression.Based on the parameterization reconstruction method and likelihood ratio test,the coefficient estimation method,significance test of this model and the discriminant test of varying-coefficient are given respectively.Both in Monte Carlo simulation and practical application,the results show that the mixed geographically weighted regression model with varying-coefficient spatial lag renders itself well for the fitting and forecasting effect on dependent variable.The mixed geographically weighted regression model with varying-coefficient spatial lag provides a support for setting up a suitable model form for quantitative research on spatial effects.
作者 唐志鹏 吴颖 熊世峰 黄寰 TANG Zhipeng;WU Ying;XIONG Shifeng;HUANG Huan(CAS Key Laboratory of Regional Sustainable Development Modeling,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China;School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China;Business School,Chengdu University of Technology,Chengdu 610059,China)
出处 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2024年第3期345-356,共12页 Journal of University of Chinese Academy of Sciences
基金 国家自然科学基金(42171177,12171462) 成都市政府系统重大课题(B35360110202100097) 成都理工大学社科规划重大培育项目(YJ2021-XP001)资助。
关键词 空间异质性 混合地理加权回归 显著性检验 变系数 spatial heterogeneity mixed geographically weighted regression significance test varying-coefficient
  • 相关文献

参考文献2

二级参考文献40

  • 1Mei Changlin Wang NingSchool of Science,Xi’an Jiaotong Univ.,Xi’an 710049..FUNCTIONAL-COEFFICIENT REGRESSION MODEL AND ITS ESTIMATION[J].Applied Mathematics(A Journal of Chinese Universities),2001,16(3):304-314. 被引量:6
  • 2魏传华,梅长林.半参数空间变系数回归模型的两步估计方法及其数值模拟[J].统计与信息论坛,2005,20(1):16-19. 被引量:27
  • 3(UK)Bowman A W.An alternative method of cross-validation for the smoothing of density estimate[J]. Biometrika,1984,(71):353-360.
  • 4(US)Cleveland W S Robust locally weighted regression and smoothing scatterplots(J). Journal of the American Statistical Association.1979,(74):829-836.
  • 5(UK)Brunsdon C,Fotheringham A S,Charlton M Some notes on parametric significance test for geographically weighted regression[J].Journal of Regional Science,1999,(39):497-524.
  • 6(US)Hastie T J, Tibshirani R J.Generalized Additive Models[M].London:Chapman and Hall,1990.
  • 7(US)Anselin L,(US) Rey S quad Properties of tests for spatial dependence in linear regression models[J]. Geographical Analysis,1991,(23):112-131.
  • 8(US)Anselin L Spatial Econometrics: Methods and Models[M]. Kluwer Academic ,Dordrecht, 1988.
  • 9(UK)Fotheringham A S,Charlton M,Brunsdon C.quad The geography of parameter space:an investigation into spatialnon-stationarity[J].International Journal of Geographical Information Systems,1996,(10):605-627.
  • 10(UK)Fotheringham A S. Trends in quantitative methods I:stressing the local[J]. Progress in Human Geography,1997,(21):88-96.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部