摘要
舌象的精准分割是能否获得正确舌象诊断结果的重要前提。针对在自然光照条件下传统分割算法难以精确、稳定地分割舌体图像的难题,构建一种融合空洞卷积双注意力机制与密集连接机制的改进型U-Net舌象分割模型(Dilated Attention&Dense U-Net,Dilated ADU-Net)。首先,基于U-Net网络的对称结构搭建主干网络;然后,下采样模块采用空洞型混合注意力模块,使网络聚焦于舌体特征,上采样模块采用密集连接机制融合多层特征信息;最后,采用开放环境下的舌象数据集对网络进行训练获得舌象分割模型。通过实验验证,和其他先进的分割方法相比,本文构建的舌象分割模型平均交并比(mean Intersection over Union,mIoU)达到96.73%,相似系数(Dice Similarity Coefficient,DSC)达到98.08%,具有更好的分割性能,可以实现复杂环境下舌象的精准分割。
Accurate tongue image segmentation is an important prerequisite for obtaining correct tongue diagnosis results.Aiming at the problem that traditional segmentation algorithms are difficult to accurately and stably segment tongue images under com⁃plex lighting conditions,an improved U-Net tongue image segmentation model(Dilated Attention&Dense U-Net,Dilated ADU-Net)combining dilated convolution dual attention mechanism and dense connection mechanism is constructed.Firstly,the backbone network is built based on the symmetric structure of U-Net network.Then,the downsampling module uses a cavity mixed attention module to make the network focus on tongue features,and the upsampling module uses a dense connection mechanism to fuse multi-layer feature information.Finally,the tongue image dataset in open environment is used to train the net⁃work to obtain the tongue image segmentation model.Experimental verification shows that compared with other advanced segmen⁃tation methods,the mean Intersection over Union(mIoU)of tongue image segmentation model constructed in this paper reaches 96.73%and the similarity coefficient Dice(DSC)reaches 98.08%,which has better segmentation performance and can realize accurate segmentation of tongue image in complex environments.
作者
王鑫
辛国江
张杨
朱磊
WANG Xin;XIN Guojiang;ZHANG Yang;ZHU Lei(School of Information Science and Engineering,Hunan University of Chinese Medicine,Changsha 410208,China)
出处
《计算机与现代化》
2024年第4期48-54,共7页
Computer and Modernization
基金
湖南省一流本科课程项目(2021-896)
长沙市科技局项目(kq2202265)
湖南省教育厅科研重点项目(22A0255)
湖南省中医药科研计划重点课题(2020002)。
关键词
舌象分割
深度学习
注意力机制
密集连接
开放环境
tongue segmentation
deep learning
attention mechanism
dense connection
open environment