摘要
针对电力用户的窃电诊断问题,以真实的、海量的用户用电数据为基础,基于机器学习技术,对样本数据进行数据清洗和特征选择。首先,将电力用户按照用电特性结合窃电相关的多个因素进行动态的分组,保证窃电分析的针对性和适应性;然后,使用基于高斯核函数的支持向量机算法构建分类模型,并对分类结果进行可视化,通过五折交叉验证对该算法进行仿真计算,分析模型的可靠性及稳定性;最后,通过开展现场核查,进一步验证该方法的有效性。
Aiming at the problem of theft and leakage diagnosis for electricity consumers,based on real and massive user electricity consumption data,and machine learning technology,data cleaning and feature selection are carried out on the sample data.Power users are dynamically grouped based on their electricity consumption characteristics and multiple factors related to power stealing,ensuring the pertinence and adaptability of theft and leakage analysis.Build a classification model using support vector machines algorithm based on Gaussian kernel function,visualize the classification results,and simulate the algorithm through five fold cross validation to analyze the reliability and stability of the model.Finally,the effectiveness of this method is further verified through on-site verification.
作者
鞠默欣
唐伟宁
周雨馨
于欢
倪鹏翔
宋昊燃
戚意彬
高山
JU Moxin;TANG Weining;ZHOU Yuxin;YU Huan;NI Pengxiang;SONG Haoran;QI Yibin;GAO Shan(State Grid Jilin Electric Power Company Limited Marketing Service Center,Changchun 130062,China;State Grid Changchun Power Supply Company,Changchun 130021,China)
出处
《吉林电力》
2024年第2期39-42,45,共5页
Jilin Electric Power
关键词
支持向量机
窃电
智能诊断
support vector machine
power stealing
intelligent diagnosis