期刊文献+

基于动态分组的支持向量机窃电识别方法 被引量:1

Power Stealing Identification Method by Support Vector Machine Based on Dynamic Grouping
下载PDF
导出
摘要 针对电力用户的窃电诊断问题,以真实的、海量的用户用电数据为基础,基于机器学习技术,对样本数据进行数据清洗和特征选择。首先,将电力用户按照用电特性结合窃电相关的多个因素进行动态的分组,保证窃电分析的针对性和适应性;然后,使用基于高斯核函数的支持向量机算法构建分类模型,并对分类结果进行可视化,通过五折交叉验证对该算法进行仿真计算,分析模型的可靠性及稳定性;最后,通过开展现场核查,进一步验证该方法的有效性。 Aiming at the problem of theft and leakage diagnosis for electricity consumers,based on real and massive user electricity consumption data,and machine learning technology,data cleaning and feature selection are carried out on the sample data.Power users are dynamically grouped based on their electricity consumption characteristics and multiple factors related to power stealing,ensuring the pertinence and adaptability of theft and leakage analysis.Build a classification model using support vector machines algorithm based on Gaussian kernel function,visualize the classification results,and simulate the algorithm through five fold cross validation to analyze the reliability and stability of the model.Finally,the effectiveness of this method is further verified through on-site verification.
作者 鞠默欣 唐伟宁 周雨馨 于欢 倪鹏翔 宋昊燃 戚意彬 高山 JU Moxin;TANG Weining;ZHOU Yuxin;YU Huan;NI Pengxiang;SONG Haoran;QI Yibin;GAO Shan(State Grid Jilin Electric Power Company Limited Marketing Service Center,Changchun 130062,China;State Grid Changchun Power Supply Company,Changchun 130021,China)
出处 《吉林电力》 2024年第2期39-42,45,共5页 Jilin Electric Power
关键词 支持向量机 窃电 智能诊断 support vector machine power stealing intelligent diagnosis
  • 相关文献

参考文献7

二级参考文献56

  • 1杨尚东,乞建勋,李星梅.基于LVQ神经网络的供电企业客户信用风险识别[J].统计与决策,2006,22(23):157-158. 被引量:6
  • 2王绵斌,谭忠富,张蓉.供电企业规避电费回收风险的客户信用评价方法[J].华东电力,2007,35(1):21-25. 被引量:67
  • 3McDaniel P, McLaughlin S. Security and Privacy Challenges in the Smart Grid[J]. IEEE Secure Systems, 2009, 7(3): 75-77.
  • 4Cleveland F M. Cyber Ssecurity Issues for Advanced Metering Infrasttructure (ami) [C].//Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE. IEEE, 2008: 1-5.
  • 5Smith T B. Electricity theft: A Comparative Analysis [J]. Energy Policy, 2004, 32(18): 2067-2076.
  • 6McLaughlin S, Podkuiko D, McDaniel P. Energy theft in the Advanced Metering Infrastructure[M].//Critical Information Infrastructures Security, Springer Berlin Heidelberg, 2010: 176-157.
  • 7Wang L, Devabhaktuni V. Support Vector Machine based Data Classification for Detection of Electricity Theft [C].//Power Systems Conference and Exposition (PSCE), 2011 IEEE/PES. IEEE, 2011: 1-8.
  • 8Nizar A H, Dnng Z Y, Zhao J H, et al. A data Mining based NTL Analysis Method [C].//Power Engineering Society General Meeting, 2007. IEEE. 2007: 1-8.
  • 9Nagi J, Yap K S, Tiong S K, et al. Detection of Abnormalities and Electricity Theft using Genetic Support Vector Machines[C].//TENCON 2008-2008 IEEE Region 10 Conference. IEEE, 2008: 1-6.
  • 10Sch o lkopf B, Platt J C, Shawe-Taylor J, et al. Estimating the Support of a High-Dimensional Distribution [J]. Neural Computation, 2001, 13(7): 1443-1471.

共引文献170

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部