期刊文献+

基于粒子群算法和注意力机制的LSTM的PM_(2.5)预测研究

PM_(2.5)Prediction of Long Short-Term Memory Network(LSTM)Based on Particle Swarm Optimization Algorithmand Attention Mechanism
下载PDF
导出
摘要 PM_(2.5)是空气质量的重要影响因素之一,更加准确地预测PM_(2.5)的含量,对于预报空气质量变化、空气治理和促进科学绿色发展都有着重要的作用。本文提出一种基于粒子群算法和注意力机制的长短期记忆网络(LSTM)模型,该模型既具备了LSTM可以轻松提取数据的时间维度信息的能力,又具备了注意力机制可以完美解决特征权重分配的能力,可以较为准确地对空气中PM_(2.5)含量进行预测。通过与K近邻回归、支持向量回归、循环神经网络和未进行寻优处理的基于注意力机制的LSTM等模型进行对比试验,证明了基于粒子群算法和注意力机制的LSTM在预测空气中PM_(2.5)含量时具有更佳的性能,且模型的均方误差(MSE)、平均绝对误差(MAE)在保证相同相关系数(R^(2))的情况下,降低了50%以上。 PM_(2.5)is one of the important factors affecting air quality.More accurate prediction of the content of PM_(2.5)plays an important role in forecasting air quality changes,doing air governance and promoting the scientific and green development.This paper proposes a Long Short-Term Memory Network(LSTM)model based on particle swarm optimization algorithm and attention mechanism.This model has both the ability of LSTM to easily extract the time dimension information of data,and the ability of attention mechanism to perfectly solve the feature weight distribution,which can more accurately predict the content of PM_(2.5)in the air.Through comparative experiments with K nearest neighbor regression,support vector regression,recurrent neural network and LSTM based on attention mechanism without optimization processing,it is proved that the LSTM based on particle swarm optimization algorithm and attention mechanism has better performance in predicting PM_(2.5)content in the air,and the Mean Square Error(MSE)and Mean Absolute Error(MAE)of the model are reduced by more than 50%under the same correlation coefficient(R^(2)).
作者 冀东 刘祖涵 王莉莉 涂翔 JI Dong;LIU Zu-han;WANG Li-li;TU Xiang(School of Information Engineering,Nanchang Institute of Technology,Nanchang Jiangxi 330099,China;College of Science,Nanchang Institute of Technology,Nanchang Jiangxi 330099,China;Jiangxi Academy of Eco-Environmental Sciences and Planning,Nanchang Jiangxi 330039,China)
出处 《西华师范大学学报(自然科学版)》 2024年第3期327-334,共8页 Journal of China West Normal University(Natural Sciences)
基金 国家自然科学基金项目(42261077)。
关键词 PM_(2.5) 长短期记忆网络 注意力机制 粒子群算法 预测 PM_(2.5) Long Short-Term Memory Network attention mechanism particle swarm optimization algorithm prediction
  • 相关文献

参考文献5

二级参考文献47

  • 1Anne Boynard, Cathy Clerbaux, Lieven Clarisse, et al. First sim- ultaneous space measurements of atmospheric pollutants in the boundary layer from IASI: A ease study in the North China Plain [ J ]. Geophysical Research Letters, 2014, 41 (2) : 645 - 651.
  • 2Zhao X J, Zhao P S, Xu J, et al. Analysis of a winter regional haze event and its formation mechanism in the North China Plain [ J ]. Atmospheric Chemistry and Physics, 2013, 13:5685 - 5696.
  • 3Gupta P, Christopher S A. Seven year particulate matter air quali- ty assessment from surface and satellite measurements [ J 1. At- mospheric Chemistry and Physics, 2008, 8 (12) : 3311 -3324.
  • 4Kumar N, Chu A, Foster A. An empirical relationship between PM2.5 and aerosol optical depth in Delhi Metropolitan [ J ]. At- mospheric Environment, 2007, 41 (21) : 4492 -4503.
  • 5Levy R C, Remer LA, Mattoo S, et al. Second-generation opera- tional algorithm : Retrieval of aerosol properties over land from in- version of Moderate Resolution Imaging Spectroradiometer spectral reflectance [ J ]. Journal of Geophysical Research, 2007, 112, D13211 : 1 -21.
  • 6魏义坤,杨威,刘静.关于径向基函数插值方法及其应用[J].沈阳大学学报,2008,20(1):7-9. 被引量:28
  • 7刘学军,晋蓓,王彦芳.DEM流径算法的相似性分析[J].地理研究,2008,27(6):1347-1357. 被引量:25
  • 8杨眉,王世新,周艺,王丽涛.DMSP/OLS夜间灯光数据应用研究综述[J].遥感技术与应用,2011,26(1):45-51. 被引量:99
  • 9Shuxiao Wang,Jiming Hao.Air quality management in China:Issues,challenges,and options[J].Journal of Environmental Sciences,2012,24(1):2-13. 被引量:73
  • 10孟晓艳,王瑞斌,张欣,李健军,李钢.2006─2010年环保重点城市主要污染物浓度变化特征[J].环境科学研究,2012,25(6):622-627. 被引量:45

共引文献430

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部