摘要
为提高轨道交通与公交接驳的有效性,对轨道交通的站点公交接驳范围进行研究。基于问卷调查数据,分析不同轨道交通段乘行时间场景下个体出行感知分布特征,包括出行心理分布特征和距离衰减特征,确定可接受接驳时间和轨道段乘行时间的相关性关系,采用非集计价格敏感度模型计算不同轨道段乘行时间场景下的公交接驳时空阈值。结果表明:可接受的公交接驳时间随轨道段乘行时间增长呈非线性增长,增长速度逐渐变缓,两者之间的关系可用对数模型拟合,R^(2)为0.83;出行者在轨道段乘行10 min、20 min、30 min、40 min、60 min和80 min时,可接受的接驳公交服务范围分别为1.65 km、2.4 km、3.51 km、4.86 km、5.79 km和6.36 km;以济南市地铁2号为例,计算19个轨道车站的公交接驳范围,其中位于城市外围区域的轨道站点公交接驳范围相对较大。
To ensure the operational efficiency of rail transit,a study was conducted on the bus connection range of rail stations.Based on questionnaire survey data,the distribution characteristics of individual travel perception in different rail travel time scenarios,including the distribution characteristics of travel psychology and distance attenuation,were analyzed.The correlation between acceptable feeder time and travel time on rail segments was determined,and the disaggregate price sensitivity model was used to calculate the spatiotemporal threshold for bus feeder under different scenarios of travel time on rail segments.The results show that the acceptable bus feeder time increases non-linearly with the travel time on rail segments,and the growth rate gradually slows down.The relationship between the two can be fitted using a logarithmic model with an R^(2) value of 0.83.For travelers with rail segment travel times of 10 minutes,20 minutes,30 minutes,40 minutes,60 minutes,and 80 minutes,the acceptable range for bus feeder is 1.65 km,2.4 km,3.51 km,4.86 km,5.79 km,and 6.36 km,respectively.Taking Jinan's Metro Line 2 as an example,the bus feeder range for 19 rail stations was calculated,and the stations located in the outer areas of the city have relatively larger bus feeder ranges.
作者
毕亚茹
于晓桦
杨大志
田雨晗
刘欣萍
BI Yaru;YU Xiaohua;YANG Dazhi;TIAN Yuhan;LIU Xinping(School of Transportation Engineering,Shandong Jianzhu University,Jinan 250101,China)
出处
《交通科技与经济》
2024年第3期45-54,共10页
Technology & Economy in Areas of Communications
基金
山东省自然科学基金项目(ZR2021MG032)。
关键词
交通工程
公交接驳范围
非集计价格敏感度模型
轨道段乘行时间
个体感知
距离衰减模型
transportation engineering
bus feeder range
disaggregate price sensitivity model
travel time on rail segments
individual perception
distance decay model