期刊文献+

固定化漆酶介体系在竹塑复合材料界面改性中的作用机制

Mechanism of Immobilized Laccase-mediated Systems in Interfacial Modification of Bamboo-plastic Composites
下载PDF
导出
摘要 采用固定化漆酶与多巴胺协同改性竹纤维,固定化漆酶催化氧化竹纤维表面形成活性位点,在竹纤维表面构筑了微纳米多尺度疏水结构,改善了竹纤维与聚β—羟基丁酸酯(PHB)的界面相容性,其制备的竹塑复合材料的冲击性能、拉伸性能和弯曲性能分别提升了23.10%、25.00%、29.14%。同时固定化技术能够克服漆酶回收困难的问题,经过两次改性竹纤维后的固定化漆酶酶活回收率达15.79%,实现竹塑复合界面生物酶促增容工作高效化、可循环化。 This study explores the use of magnetic materials for immobilizing laccase to modify bamboo fibers synergistically with dopamine.The immobilized laccase facilitates the oxidation of bamboo fiber surfaces,creating active sites and forming a micro-and nano-multiscale hydrophobic structure on the fibers.This modification enhances the interfacial compatibility between bamboo fibers and poly(β-hydroxybutyrate)(PHB),resulting in significant improvements in the impact,tensile,and flexural properties of bamboo-plastic composites by 23.10%,25.00%,and 29.14%,respectively.Additionally,the immobilization technology overcomes the challenge of laccase recovery difficulty,with a 15.79%increase in enzyme activity recovery rate after two modifications.This approach efficiently enhances the interfacial bio-enzymatic capacity and recyclability of bamboo-plastic composites.
作者 张雨桐 孙嘉靖 孟姊成 黄真亮 朱亚琼 张双保 Zhang Yutong;Sun Jiajing;Meng Zicheng;Huang Zhenliang;Zhu Yaqiong;Zhang Shuangbao(MOE Key Laboratory of Wooden Material Science and Application,Beijing Forestry University,Beijing 100083,China)
出处 《中国人造板》 2024年第5期7-12,共6页 China Wood-Based Panels
关键词 漆酶 固定化技术 竹塑复合材料 可持续回收利用 laccase immobilization technology bamboo-plastic composites sustainable recycling
  • 相关文献

参考文献3

二级参考文献26

  • 1Yan Jinping, Chen Daidi, Yang En, et al. Purification and characterization of a thermotolerant laccase isoform in Trametes trogii strain and its potential in dye deeoloriza- tion. International Biodeterioration & Biodegradation,2014, 93 : 186-194.
  • 2Asadgol Z. , Forootanfar H. , Rezaei S. , et al. Removal of phenol and bisphenol-a cata|yzed by laccase in aqueous so- lution. Journal of Environmental Health Science & Engi- neering,2014,12:93.
  • 3Telke A. A. , Kalyani D. C. , Jadhav U. U. , et al. Purifica- tion and characterization of an extracellular laccase from a Pseudomonas sp. LBC1 and its application for the removal of bisphenol A. Journal of Molecular Catalysis B : Enzymat- ic ,2009,61 (3-4) :252-260.
  • 4Hou Jingwei, Dong Guangxi, Ye Yun, etal. Laccase immobi- lization on titania nanoparticles and titania-functionalized membranes. Journal of Membrane Science, 2014, 452: 229 -240.
  • 5Hanefeld U. , Gardossi L. , Magner E. Understanding en- zyme immobilisation. Chemical Society Reviews, 2009,38 (2) :453-468.
  • 6Brady D. , Jordaan J. Advances in enzyme immobilisation. Bioteehnology Letters ,2009,31 ( 11 ) : 1639-1650.
  • 7Greiner A. , Wendorff J. H. Electrospinning: A fascinating method for the preparation of uhrathin fibers. Angewandte Chemie International Edition, 2007,46 ( 30 ) : 5670-5703.
  • 8Wang Yuhong, Hsieh Y. L. Enzyme immobilization to ul- tra-fine cellulose fibers via amphiphilic polyethylene glycol spacers. Journal of Polymer Science Part A: Polymer Chemistry ,2004,42 ( 17 ) :4289-4299.
  • 9Wang Zhengang, Wan Lingshu, Liu Zhenmei, et al. Enzyme immobilization on electrospun polymer nanofibers: An o- verview. Journal of Polymer Science Part A: Polymer Chemistry, 2009,56 ( 4 ) : 189-195.
  • 10Li Yan, Quan Jing, Branford-White C. , et al. Electrospun polyacrylonitrile-glycopolymer nanofibrous membranes for enzyme immobilization. Journal of Molecular Catalysis B: Enzymatic ,2012,76 : 15-22.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部