期刊文献+

In-situ embedded ultrafine Bi_(12)O_(17)Br_(2)nanotubes in MOF-derived hierarchical porous carbon for enhanced photocatalytic CO_(2)conversion to CO

原文传递
导出
摘要 Increasing the utilization efficiency of photogenerated electrons is highly recognized as one of the ef-ficient approaches to boost the photocatalytic CO_(2)conversion efficiency.Herein,ZIF-67-derived porous carbon(PC)material was employed for the construction of PC@ultrafine Bi_(12)O_(17)Br_(2)nanotubes(PC@BOB NTs)composites through a facile solvothermal synthesis in order to optimize the use of excited elec-trons in the BOB NTs.Photoelectrochemical characterization results revealed that the introduction of PC material achieved a faster charge separation rate in the PC@BOB composites,ensuring more photogener-ated electrons participate in the CO_(2)adsorption and activation process.Moreover,the pore structures of ZIF-67-derived PC material provided abundant confined spaces for the enrichment of CO_(2)molecules.Af-ter 5 h of Xenon lamp irradiation,PC@BOB composites exhibited obviously increased photocatalytic CO_(2)reduction activity in the pure water.When the addition amount of PC was 5 wt%,the PC@BOB-2 com-posite showed the highest CO evolution rate of 359.70μmol/g,which was 2.95 times higher than that of the pure BOB NTs.This work provides some independent insights into the applications of Metal-Organic Framework(MOF)-derived hierarchical porous structures to strengthen the CO_(2)enrichment,as well as the excited charge utilization efficiency,thus achieving a high solar-to-fuel conversion efficiency.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第4期47-53,共7页 材料科学技术(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.22108108,22108106,22109055) China Postdoctoral Science Foundation(No.2022M721381).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部