期刊文献+

通胀不确定下带有提取约束的最优股利分配

Optimal Dividend Distribution under Drawdown Constraints in Inflation Uncertainty
下载PDF
导出
摘要 利用通胀对公司的财富过程折现,并采用常相对风险厌恶效用函数,建立相应的随机模型以及最优股利分配模型,得出相应的Hamilton-Jacobi-Bellman变分不等式作为一个非线性自由边界问题,并通过勒让德变换进行求解。最终得出的结论是最优股利率是公司当前盈余和历史最高股利率的函数,此外,随着通货膨胀率越大,股东财富价值也会越小。 Using inflation to discount the company´s wealth process and use Constant Relative Risk Aversion utility function, we establish the corresponding stochastic model and optimal dividend distri⁃ bution model, and give the corresponding Hamilton-Jacobi-Bellman variational inequality as a nonlin⁃ ear, free-boundary problem and solve it through the Legendre transform.The final conclusion is that the optimal dividend rate is a function of the company’s current surplus and the historical peak of the dividend rate. In addition, the greater the inflation rate, the smaller the value of shareholders´ wealth will be.
作者 王康 梁勇 WANG Kang;LIANG Yong(School of Mathematics-Physics and Finance,Anhui Polytechnic University,Wuhu 241000,Anhui,China)
出处 《合肥学院学报(综合版)》 2024年第2期37-45,共9页 Journal of Hefei University:Comprehensive ED
基金 安徽省高端装备智能控制国际联合研究中心开放基金“G-布朗运动驱动的随机神经网络指数稳定性研究”(IRICHE-05)。
关键词 通货膨胀 最优股利分配 CRRA效用函数 HJB方程 勒让德变换 inflation optimal dividend distribution CRRA utility HJB equation Legendre transform
  • 相关文献

参考文献4

二级参考文献32

  • 1夏登峰,费为银,梁勇.带含糊厌恶的股东价值最大化[J].中国科学技术大学学报,2010,40(9):920-924. 被引量:8
  • 2龙如银,郑挺国,云航.Markov区制转移模型与我国通货膨胀波动路径的动态特征[J].数量经济技术经济研究,2005,22(10):111-117. 被引量:41
  • 3王少平,彭方平,晓欧(校对).我国通货膨胀与通货紧缩的非线性转换[J].经济研究,2006,41(8):35-44. 被引量:64
  • 4Karatzas I, Shreve S E. Methods of Mathematical Finance[M]. New York: Springer, 1998.
  • 5Knight F H. Risk, Uncertainty and Profit[M]. Boston: Houghton Mifflin, 1921.
  • 6Ellsberg D. Risk, ambiguity and the savage axioms[J]. Quarterly Journal of Economics, 1961, 75(4): 643-699.
  • 7Chen Z, Epstein L G. Ambiguity, risk and asset returns in continuous time[J]. Econometrica, 2002, 70(4): 1403-1443.
  • 8Fei W Y. Optimal consumption and portfolio choice with ambiguity and anticipation[J]. Information Sci- ences, 2007, 117(23): 5178-5190.
  • 9Fei W Y. Optimal portfolio choice based on MEU under ambiguity[J]. Stochastic Models, 2009, 25(3): 455-482.
  • 10Bensoussan A, Keppo J, Sethi S P. Optimal consumption and portfolio decisions with partially observed real prices[J]. Mathematical Finance, 2009, 19(2): 215-236.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部