摘要
为解决传统区域生长点云分割算法存在的欠分割和过分割现象,提出一种结合超体素与颜色信息的区域生长点云分割方法。在分割过程中加入超体素过分割步骤,避免直接从点云中分割数据,有效消除噪声和异常值对分割的影响,利用一种几何和颜色信息的联合准则合并超体素并进行区域生长。与深度学习方法和其它3种传统分割算法相比,分割效率和精度都得到了较大提升,解决了欠分割和过分割的问题。
To solve the problems of under segmentation and over segmentation in traditional region growing point cloud segmentation algorithm,a point cloud segmentation algorithm combining supervoxel and color region growth was proposed.The super voxel over segmentation step was added in the segmentation process,which avoided the direct segmentation of data from the point cloud and decreased the effect of yawp and exception value on segmentation algorithm.A joint criterion of geometric and color information was used to merge the super voxels and grow the region.Compared with the depth learning method and the other three traditional segmentation algorithms,the segmentation efficiency and accuracy are greatly improved,and the problems of under segmentation and over segmentation are well solved.
作者
鲁斌
王志远
LU Bin;WANG Zhi-yuan(Department of Computer,North China Electric Power University,Baoding 071000,China;Department of Computer,Engineering Research Center of the Ministry of Education for Intelligent Computing of Complex Energy Systems,Baoding 071000,China)
出处
《计算机工程与设计》
北大核心
2024年第5期1482-1489,共8页
Computer Engineering and Design
基金
河北省重点研发计划课题基金项目(20310103D)。
关键词
超体素
法线信息
点云分割
区域生长
颜色信息
过分割
欠分割
supervoxel
normal information
point cloud segmentation
region growing
color information
over segmentation
under segmentation