期刊文献+

联合均值和散度逆高斯回归模型的参数估计

Parameter Estimation of Joint Mean and Inverse Gaussian Regression Model of Dispersion
下载PDF
导出
摘要 逆高斯回归模型可用于分析正偏态数据,人们通常研究解释变量对其均值参数的影响,但往往忽略了对其散度参数的影响,文章则基于解释变量对均值和散度都有影响的前提,针对联合均值和散度逆高斯回归模型,探讨模型参数的极大似然估计问题。MM算法在优化问题上具有分离参数、降低目标函数的维度、简化求解过程等优点,将MM算法应用于联合均值和散度逆高斯回归模型,能将多元似然函数彻底分解为一系列一元函数之和,从而绕开了参数估计中的矩阵求逆问题。模拟研究表明,当数据量达到100时就能得到很好的估计效果;实证分析表明,理论研究在实际应用中具有可行性。 Inverse Gaussian regression models can be used to analyze positive skewness data.People usually study the influence of explanatory variables on their mean parameters,but often ignore the influence on their dispersion parameters.Based on the premise that explanatory variables have an effect on both mean and dispersion,this paper discusses the maximum likelihood estimation of model parameters for the joint mean and inverse Gaussian regression model of dispersion.In terms of optimization,MM algorithm has the advantages of separating parameters,reducing the dimension of objective function,simplifying the solving process and so on.MM algorithm applied to joint mean and the inverse Gaussian regression model of dispersion,the multivariate likelihood function can be completely decomposed into the sum of a series of unary functions,thus bypassing matrix inversion in parameter estimation.Simulation studies show that good estimation effect can be obtained when the amount of data reaches 100.The empirical analysis shows that the theoretical research is feasible in practical application.
作者 张露露 黄希芬 Zhang Lulu;Huang Xifen(School of Mathematics,Yunnan Normal University,Kunming 650500,China)
出处 《统计与决策》 北大核心 2024年第9期49-54,共6页 Statistics & Decision
基金 国家自然科学基金资助项目(12261108) 云南省基础研究专项面上项目(202401AT070126) 云南省现代分析数学及其应用重点实验室项目(202302AN360007)。
关键词 逆高斯分布 MM算法 参数分离 BOOTSTRAP方法 inverse Gaussian distribution MM algorithm parameter separation Bootstrap approach
  • 相关文献

参考文献7

二级参考文献46

  • 1陆天虹,王静龙.带有额外参数连接函数的广义线性模型[J].数学的实践与认识,1993,23(1):23-28. 被引量:2
  • 2Hogg, R. V., Klugman, S. A. Loss Distributions[M].New York: Wiley, 1984.
  • 3Haberman, S., Renshaw, A. E. Generalized Linear Models and Actuarial Science[J].The Statistician,1996,45(4).
  • 4J0rgensen, B., de Souza, M. Fitting Tweedie's Compound Poisson Model to Insurance Claims Data[J].Scandinavian Actuarial Journal, 1994,(1).
  • 5Smyth, G. K., Jorgensen, B. Fitting Tweedie's Compound Poisson Model to Insurance Claims Data:Dispersion Modelling [J].Astin Bulletin,2002, (32).
  • 6Rigby, R. A., Stasinopoulos, D. M. Generalized Additive Models for Location, Scale and Shape (with discussion)[J].Applied Statistics,2005, (54).
  • 7陈学华,韩兆洲.线性高斯状态空间模型估计的简易实现方法[J].统计与决策,2007,23(13):14-16. 被引量:1
  • 8Aitkin M. Modelling variance heterogeneity in normal regression using GLIM[J]. Journal of the Royal Statistical Society Series C, 1987, 36(3): 332-339.
  • 9Engel l, Huele A F. A generalized linear modeling approach to robust design[J] Technometrics, 1996, 38(4): 365-373.
  • 10Smyth G K. Generalized linear models with varying dispersion[J]. Journal of the Royal Statistical Society Series B, 1989, 51(1): 47-60.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部