期刊文献+

基于区域渐进校准网络的人脸检测与定位

Face detection and localization on region-base progressive calibration network
下载PDF
导出
摘要 为解决角度变化下的人脸检测中存在参数量大及角度幅度变量小的问题,提出区域渐进校准网络用于任意平面角度的人脸检测,通过级联网络结构降低角度变化、提升网络运行速度。采用区域生成网络产生高质量的候选区域,构造渐进校准网络,逐步缩小面部平面角度变化范围,同时由粗到细地对候选区域执行面部检测。其中,特征提取的中间层融合参数量较少时,更好地表示了面部特征,调整锚的设置解决小尺度面部问题。在角度增强的FDDB(face detection data set and benchmark)数据集与WIDER FACE数据集上的实验结果表明,提出的方法分别取得了89.1%与90.4%的平均召回率,准确度高于快速区域卷积神经网络(Faster RCNN),且运行速度更快。在实际项目中使用该算法,验证了该方法的有效性及可行性。 In order to solve the problem of large parameter quantity and small angle amplitude variable in face detection under angle change,this paper proposes a region-based progressive calibration network for face detection at any plane angle,which reduces the angle change and improves the network running speed through the cascade network structure.Specifically,the region generation network is first used to generate a high quality candidate region,and then the progressive calibration network is constructed to gradually reduce the range of the face plane angle variation,while performing face detection on the candidate region from coarse to fine.Among them,when the number of middle-layer fusion parameters for feature extraction is small,the facial features are better represented,and the anchor setting is adjusted to solve the small-scale facial problem The experimental results on the angle-enhanced FDDB(face detection data set and benchmark)and the WIDER FACE dataset show that the proposed method achieves an average recall rate of 89.1%and 90.4%,respectively,achieving more accuracy than that of Faster RCNN and running fast.The effectiveness and feasibility of this method are verified by using this algorithm in a practical project.
作者 齐向明 侯明君 高鹏淇 黄胜 QI Xiangming;HOU Mingjun;GAO Pengqi;HUANG Sheng(College of Software,Liaoning Technical University,Huludao 125105,China;College of Computer Science,Qinghai Normal University,Xining 810008,China;College of Electronic and Information Engineering,Liaoning Technical University,Huludao 125105,China)
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2024年第2期248-256,共9页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金项目(62173171)。
关键词 人脸检测 神经网络 机器视觉 级联网络 旋转不变 face detection neural network machine vision cascade network rotation invariant
  • 相关文献

参考文献4

二级参考文献30

  • 1武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 2Yang M H, Kriegman D J, Ahuja N. Detecting faces in images: a survey [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58.
  • 3Rowley H A, Baluja S, Kanade T. Neural network-based face detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(1): 23-38.
  • 4Schneiderman H, Kanade T. A statistical method for 3D object detection applied to faces and cars [C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Hilton Head, 2000:746-751.
  • 5Viola P, Jones M. Rapid object detection using a boosted cascade of simple features [C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, 2001; 511-518.
  • 6Huang C, Ai H Z, Li Y, et al. Vector boosting for rotation invariant multi view face detection [C] //Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, 2005:446-453.
  • 7Schapire R E, Singer Y. Improved boosting algorithms using confidence-rated predictions [J]. Machine Learning, 1999, 37 (3) : 297-336.
  • 8Mita T, Kaneko T, Hori O. Joint Haar like features for face detection [C] //Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, 2005:1619-1626.
  • 9Baluja S, Sahami M, Rowley H A. Efficient face orientation discrimination [C] //Proceedings of International Conference on Image Processing, Singapore, 2004: 589-592.
  • 10Theocharides T, Link G, Vijaykrishnan N, etal. Embedded hardware face detection [C] /[Proceedings of the 17th IEEE International Conference on VLSI Design, Las Vegas, 2004: 133-138.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部