摘要
针对传统大数据类课程教学过于理论化问题,面向工程应用探索了以实践为基础的教学方法。通过引入“基于边缘计算的微动勘探横波速度结构即时成像系统”工程项目实践案例,以问题导向-探究-成果导向(PIO)的综合学习方式,引导学生参与负载大数据采集与预处理、负载动态变化规律探讨、负载预测及计算资源分配等关键环节,培养工程应用能力。研究结果表明,工程项目驱动的大数据类课程教学改革能够培养适应工程应用需求的专业人才,有效提升学生的实践能力和问题解决能力。
In response to the problem of overly theoretical teaching in traditional big data courses,practical teaching methods are explored for engineering applications.Through the introduction of the practical case of the engineering project“Shear wave Velocity Structure Instant-imaging System for Microtremor Survey Based on Edge Computing”,we guide students to participate in the key links such as load big data acquisition and pre-processing,load dynamic change law discussion,load prediction and calculation resource allocation,and cultivate their engineering application ability.Emphasizing teamwork and practical ability cultivation,the role of teachers is shifted from being knowledge imparters to learning guides,and the quality of education is improved by the support of information technology.The research results indicate that the teaching reform of big data courses driven by engineering projects can cultivate professional talents who meet the needs of engineering applications,effectively improving students’practical and problem-solving abilities.
作者
田入运
曹一涵
TIAN Ruyun;CAO Yihan(School of Automation,Nanjing University of Information Science and Technology,Nanjing 210044,China)
出处
《实验室研究与探索》
CAS
北大核心
2024年第4期130-137,142,共9页
Research and Exploration In Laboratory
基金
江苏省自然科学基金项目(BK20220458)。
关键词
大数据技术
工程应用
微动探测
负载预测
实践教学
big data technology
engineering applications
microtremor survey
load forecasting
practice teaching