期刊文献+

Single-ended Time Domain Fault Location Based on Transient Signal Measurements of Transmission Lines

原文传递
导出
摘要 Precise fault location plays an important role in the reliability of modern power systems.With the in-creasing penetration of renewable energy sources,the power system experiences a decrease in system inertia and alterations in steady-state characteristics following a fault occurrence.Most existing single-ended phasor domain methods assume a certain impedance of the remote-end system or consistent current phases at both ends.These problems present challenges to the applicability of con-ventional phasor-domain location methods.This paper presents a novel single-ended time domain fault location method for single-phase-to-ground faults,one which fully considers the distributed parameters of the line model.The fitting of transient signals in the time domain is real-ized to extract the instantaneous amplitude and phase.Then,to eliminate the error caused by assumptions of lumped series resistance in the Bergeron model,an im-proved numerical derivation is presented for the distrib-uted parameter line model.The instantaneous symmet-rical components are extracted for decoupling and inverse transformation of three-phase recording data.Based on the above,the equation of instantaneous phase constraint is established to effectively identify the fault location.The proposed location method reduces the negative effects of fault resistance and the uncertainty of remote end pa-rameters when relying on one-terminal data for localiza-tion.Additionally,the proposed fault analysis methods have the ability to adapt to transient processes in power systems.Through comparisons with existing methods in three different systems,the fault position is correctly identified within an error of 1%.Also,the results are not affected by sampling rates,data windows,fault inception angles,and load conditions. Index Terms—Fault location,distributed parameter line model,transient signal,renewable energy,instantaneous phase.
出处 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第2期61-74,共14页 现代电力系统保护与控制(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部