期刊文献+

Denitration of Nitroarenes Under Ambient Physiological Conditions Catalyzed by Graphdiyne-Supported Palladium

原文传递
导出
摘要 The direct cleavage of C–NO_(2)bonds for reductive denitration of nitroarenes remains a challenging transformation in synthetic organic chemistry.Herein,we report a biocompatible palladium-deposited graphdiyne nanocatalyst(Pd@GDY/DSPE-PEG)that can catalyze reductive denitration of nitroarenes under ambient physiological conditions.Mechanistic studies support this transformation via the oxidative addition of nitroarenes with Pd(0)and subsequent ligand exchange to form arylpalladium hydride.This one-step reductive denitration via Pd@GDY/DSPE-PEG successfully facilitates the repair of the nitrated proteins arising from endogenic ONOO−and restores their physiological function,including blocking the apoptosis pathway in living cells.Moreover,Pd@GDY/DSPE-PEG was further successfully applied for catalytic denitration to reduce the level of 3-nitrotyrosine residues of proteins located in the mouse brain hippocampus in vivo.This study provides an ideal strategy for designing highly active enzymatic mimicking synthetic catalysts for the regulation of the nitrated protein level and the detoxification of nitrative damage of living cells and tissues.
出处 《CCS Chemistry》 CSCD 2024年第3期641-651,共11页 中国化学会会刊(英文)
基金 support from the National Natural Science Foundation of China(grant nos.22021002,22020102005,and 22022705) the CAS-Croucher Funding Scheme for Joint Laboratories.
  • 相关文献

参考文献5

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部