摘要
目的为实现个性化的肿瘤治疗和提高治疗效果,开发一种精确预测放射疗法中腮腺剂量的模型。方法采用长短期记忆神经网络(Long Short-Term Memory,LSTM)结合麻雀搜索算法(Sparrow Search Algorithm,SSA)进行参数优化,建立腮腺剂量预测模型。收集多种与剂量预测相关的数据因素,并与其他模型进行比较和分析,验证模型的精度和预测误差。结果SSA-LSTM模型在腮腺D15、D30、D45和Dmean的剂量预测方面表现出更高的准确性和稳定性。其中,在预测腮腺D15测试集时,SSA-LSTM的平均绝对误差(Mean Absolute Error,MAE)为0.2966,拟合优度R2为0.9663。SSA-LSTM相对于LSTM、基于遗传算法优化的LSTM、利用灰狼优化算法的LSTM的MAE下降率分别为40.93%、33.39%、25.51%,R2提升率分别为8.06%、4.49%和3.03%,证明了SSA-LSTM模型相对于其他优化算法在放射疗法中对腮腺剂量预测方面的优越性。泰勒图的分析也证实了SSA-LSTM模型的可靠性和稳定性。结论采用SSA算法优化的LSTM模型可显著提高腮腺剂量的预测准确性。该模型有望扩展到其他放射疗法领域,对医疗领域具有积极的社会意义。
Objective To develop a precise model for predicting parotid gland dose in radiotherapy,so as to achieve personalized tumor treatment and improve the therapeutic effect.Methods Long short-term memory(LSTM)neural networks in combination with the sparrow search algorithm(SSA)were employed for parameter optimization to construct a parotid gland dose prediction model.Various data factors relevant to dose prediction were collected,and the model against others was compared and analyzed to validate its accuracy and prediction errors.Results The SSA-LSTM model showed higher accuracy and stability in dose prediction of parotid D15,D30,D45 and Dmean.When predicting the parotid D15 test set,the mean absolute error(MAE)of SSA-LSTM was 0.2966,and the goodness of fit R2 was 0.9663.Relatived to LSTM,LSTM optimization based on genetic algorithm,LSTM utilized grey wolf optimization algorithm,the MAE reduction rates of SSA-LSTM were 40.93%,33.39%and 25.51%,respectively,and the R2 increase rates were 8.06%,4.49%and 3.03%,respectively,which proved the superiority of SSA-LSTM model compared with other optimization algorithms in parotid gland dose prediction in radiotherapy.The reliability and stability of SSA-LSTM model were also verified by the analysis of Taylor diagram.Conclusion The SSA-optimized LSTM model can significantly improve the accuracy of parotid gland dose prediction.Moreover,This model can be extended to other areas of radiation therapy and have a positive social significance in the medical field.
作者
陈旬旬
周丹丹
丁阅文
CHEN Xunxun;ZHOU Dandan;DING Yuewen(Department of Oncology,The Third the People’s Hospital of Bengbu,Bengbu Anhui 233000,China;Medical Record Room,The Third the People’s Hospital of Bengbu,Bengbu Anhui 233000,China;Department of Hematology,The Third the People’s Hospital of Bengbu,Bengbu Anhui 233000,China)
出处
《中国医疗设备》
2024年第5期41-47,共7页
China Medical Devices
关键词
放射治疗
个体化剂量预测
腮腺剂量
麻雀搜索算法
长短期记忆神经网络
radiotherapy
individualized dose prediction
parotid gland dose
sparrow search algorithm
long short-term memory neural network