期刊文献+

基于改进Hofstetter模型的杨木组分体积分数对其弹性参数的影响规律

Effect of Component Volume Fractions on Elastic Parameters of Poplar Wood Based on Improved Hofstetter Model
下载PDF
导出
摘要 木材的微观结构和组分构成是影响其弹性参数的重要因素,但关于木材组分体积分数变化对其弹性参数影响的研究相对较少。通过引入灰分因素,对Hofstetter木材连续微观力学模型进行改进,并在此基础上分析杨木组分的体积分数变化对其弹性参数的影响规律。研究表明:改进的Hofstetter模型可较准确预测杨木的顺纹弹性模量,误差绝对值仅13.71%。结晶纤维素等自身刚度较大的组分体积分数增大时,杨木的弹性模量和剪切模量增幅较大;聚合物网络、无定形纤维素体积分数增大时,泊松比增幅较大;木质素、半纤维素体积分数变化对所有弹性参数的影响均较小。 The microstructure characteristics and composition of wood are important factors that affect elastic parameters.However,little research has been conducted on the impact of volume fraction changes in wood components.The Hofstetter continuum micromechanics model for wood was improved by introducing ash.The effect of changes in the component volume fraction of poplar wood on elastic parameters was discussed.The result shows that the improved Hofstetter model can accurately predict the longitudinal elastic modulus EL,with an absolute value of error of 13.71%.The elastic modulus and shear modulus of poplar increase significantly when the component volume fraction with high stiffness such as crystalline cellulose increases.When the volume fraction of polymer network or amorphous cellulose increases,the increase of Poisson’s ratio is significant.Changes in the volume fraction of lignin or hemicellulose have a small impact on all elastic parameters.
作者 王忠铖 杨娜 李久林 WANG Zhongcheng;YANG Na;LI Jiulin(Beijing Urban Construction Group Co.,Ltd.,Beijing 100088,China;School of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China)
出处 《木材科学与技术》 北大核心 2024年第2期12-19,共8页 Chinese Journal of Wood Science and Technology
基金 北京市博士后工作经费资助项目“大跨空间结构胶合木材料及节点力学性能研究”(2023-ZZ-129)。
关键词 杨木 改进Hofstetter模型 连续介质假设 组分 弹性参数 组分体积分数变化 poplar wood improved Hofstetter model continuous medium hypothesis components elastic parameter changes in component volume fractions
  • 相关文献

参考文献1

二级参考文献42

  • 1Addadi L, Raz S, Weiner S. Adv. Mater., 2003, 15:959-970
  • 2Nassif N, Pinna N, Gehrke N, Antonietti M, Jager C, Colfen H. Proc. Natl. Acad. Sci. USA, 2005, 102:12653-12655
  • 3Addadi L, Joester D, Nudelman F, Weiner S. Chem. Eur. J., 2006, 12:980-987
  • 4Mann S. Biomineralization : Principles and Concepts in Bioinorganic Materials Chemistry. New York: Oxford University Press, 2001. 103-106
  • 5Mann S, Heywood B R, Rajam S, Birchall J D. Nature, 1988,334:692-695
  • 6Heywood B R, Mann S. Adv. Mater., 1994, 6:9-20
  • 7Aizenberg J, Black A J, Whitesides G M. Nature, 1998, 394: 868-871
  • 8Aizenberg J, Black A J, Whitesides G M. J. Am. Chem. Soc., 1999, 121 : 4500-4509
  • 9Han Y J, Aizenberg J. Angew. Chem. Int. Ed., 2003, 42: 3668-3670
  • 10Kuther J, Seshadri R, Knoll W, Tremel W. J. Mater. Chem., 1998, 8:641-650

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部