期刊文献+

响应耦合子结构法的轴类工件频响函数预测

Prediction of Frequency Response Function of Shaft Workpiece Based on Response Coupling Substructure Method
下载PDF
导出
摘要 轴类工件切屑过程中,容易产生颤振影响加工稳定性,快速计算工件频响函数,便能为防止颤振提供依据。由于车削加工工件频繁更换,针对以往测量工件频响函数往往采用锤击法需要重复测量等问题,提出一种改进的子结构划分方法。该方法将主轴-卡盘-工件系统划分为主轴-卡盘-夹持部分、工件悬伸部分,使用子结构响应耦合法(RCSA)、有限差分法、Timoshenko梁模型求取轴类工件任意截面频响函数,并利用该方法探究了尾座对工件频响函数的影响。此划分方法避免了结合面的参数辨识,能够快速方便预测工件任意截面频响函数,与仿真所得频响函数进行对比,预测结果与仿真结果对比误差在5.38%以内,验证了该预测模型的有效性。 In the chip cutting process of shaft workpiece,it is easy to produce chatter,which affects the machining stability.Fast calculation of workpiece frequency response function can provide a basis for preventing chatter.Due to the frequent replacement of turning workpieces,an improved substructure division method is proposed to solve the problem that hammering method is often used to measure the frequency response function of workpieces in the past.In this method,the spindle-chuck-workpiece system is divided into spindle-chuck-clamping part and workpiece suspension part.Based on substructure response coupling method(RCSA)and finite difference method,Timoshenko beam model is used to calculate the frequency response function of any section of shaft workpiece.The influence of tailstock on workpiece is explored by this method.This partition method avoids the parameter identification of the joint surface,and can quickly and conveniently predict the frequency response function of any section of the workpiece.Compared with the simulated frequency response function,the prediction error is less than 5.38%,which verifies the ef-fectiveness of the prediction model.
作者 徐金波 库祥臣 苏春堂 赵杨 XU Jin-bo;KU Xiang-chen;SU Chun-tang;ZHAO Yang(School of Mechatronics Engineering,He’nan University of Science and Technology,He’nan Luoyang 471003,China;Anyang Xinsheng Machine Tool Co.,Ltd.,He’nan Anyang 455000,China)
出处 《机械设计与制造》 北大核心 2024年第5期320-324,共5页 Machinery Design & Manufacture
基金 河南省重大科技专项—ADi系列数控车床智能化技术研发及产业化应用(171100210300)。
关键词 响应耦合子结构法 工件频响函数 Timoshenko梁模型 Response Coupling Substructure Method Workpiece Frequency Response Function Timoshenko Beam Model
  • 相关文献

参考文献5

二级参考文献49

  • 1陈新,刘泽民,罗鸿,周济,余俊.基于实验模态参数的结构多层结合部参数识别[J].实验力学,1995,10(2):172-180. 被引量:3
  • 2黄玉美,傅卫平,佟浚贤.获取结合面实用切向阻尼参数的方法[J].西安理工大学学报,1996,12(1):1-5. 被引量:26
  • 3AGAPIOU J, RIVIN E, XIE C. Toolholder/spindle interfaces for CNC machine tools [J]. Annals of IRP, 1995, 41(1) : 383-387.
  • 4CELIC D, BOLTEZAR M. The influence of the coordinate reduction on the identification the joint dynamic properties [ J ]. Mechanical Systems and Signal Processing, 2009, 23 : 1260-1271.
  • 5REN Y, BEARDS C F. Identification of joint properties of a structure using FRF data [ J ]. Journal of Sound and Vibration, 1995, 186(4):567-587.
  • 6WANG J H, CHUANG S C. Reducing errors in the identification of structural joint parameters using error functions [ J ]. Journal of Sound and Vibration, 2004, 273 : 295-316.
  • 7CELIC D, BOLTEZAR M. Identification of the dynamic properties of joints using frequency response functions [J]. Journal of Sound and Vibration, 2008, 317: 158- 174.
  • 8YANG Tachung, HAO Shuo. Joint stiffness identification using FRF measurements [ J]. Computer and Structure, 2003, 81:2549-2556.
  • 9KIM T R, WUS M. Identification of joint parameters for a taper joint [J]. ASME, 1989, 111 : 282-287.
  • 10SCHMITZ T L, DUNCAN G S. Receptance coupling for dynamics prediction of assemblies with coincident neutral axes [ J]. Journal of Sound and Vibration, 2006, 289: 1045-1065.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部