期刊文献+

基于多传感器融合的目标检测方法研究

Research on Object Detection Method Based on Multi-sensor Fusion
下载PDF
导出
摘要 为了提高智能汽车对行驶区域障碍物的感知能力,设计了相机图像与激光雷达点云融合的双模中融合模型。选用YOLOv3-tiny作为图像目标检测算法,PointRCNN作为点云目标检测算法,将点云检测获取到的ROI图像与原始图像进行加权融合,在融合后包含障碍物位置信息的图像上进行目标检测。通过与基于图像或基于点云的单模目标检测模型进行比对,在选用合适加权融合系数下双模中融合模型得到了更好的目标检测效果,在KITTI数据集上总类别的mAP@.5:.95上提升了3.3%,在Cyclist障碍物类别的AP@.5:.95上有了5.7%的显著提升。激光雷达点云的引入大大提升了纯视觉目标检测模型在小目标障碍物上的检测能力。 In order to improve the perception ability of intelligent vehicles to obstacles in the driving area,a dual mode fusion model of camera image and laser radar point cloud fusion was designed.YOLOv3-tiny is selected as the image object detection algorithm and PointRCNN is selected as the point cloud object detection algorithm.The ROI image obtained from point cloud detection is weighted fused with the original image and the object detection is performed on the image containing the obstacle position information after fusion.By comparing with the single-mode object detection model based on image or point cloud,it is found that the better object detection effect is obtained when the appropriate weighted fusion coefficient is selected.On the KITTI dataset,the mAP@.5:.95 of the total category has increased by 3.3%and the AP@.5:.95 of the Cyclist obstacle category has increased by 5.7%.The introduction of lidar point cloud greatly improves the detection ability of the pure vision object detection model on small target obstacles.
作者 李玉刚 陈克 董振飞 Li Yu-gang;Chen Ke;Dong Zhen-fei(Shenyang Ligong University,Shenyang 110159,China)
出处 《内燃机与配件》 2024年第7期31-33,共3页 Internal Combustion Engine & Parts
关键词 智能汽车 目标检测 融合感知 YOLOv3-tiny Intelligent vehicles Object detection Fusion perception YOLOv3-tiny
  • 相关文献

参考文献6

二级参考文献80

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2Pontil M,Verri A. Support vector machines for 3-d object recognition[J].Pattern Analysis Machine Intelligence,1998,(06):637-646.
  • 3Itti L,Koch C. Computational modelling of visual attention[J].{H}Nature Reviews Neuroscience,2001,(03):194-203.
  • 4Borji A,Sihite D N,Itti L. Salient object detection:A benchmark[A].Florence:Springer Berlin Heidelberg,2012.414-429.
  • 5Navalpakkam V,Itti L. An integrated model of top-down and bottom-up attention for optimal object detection[A].{H}New York:IEEE Press,2006.2049-2056.
  • 6Viola P,Jones M. Rapid object detection using a boosted cascade of simple feature[A].Kauai:IEEE Press,2001.511-518.
  • 7Viola P,Platt J,Zhang C. Multiple instance boosting for object detection[A].{H}Cambridge:The MIT Press,2006.1417-1424.
  • 8Viola P,Jones M. Robust real-time face detection[J].{H}International Journal of Computer Vision,2004,(02):137-154.
  • 9Lienhart R,Maydt J. An extended set of Haar-like features for rapid object detection[A].Rochester:IEEE Press,2002.900-903.
  • 10Leibe B,Leonardis A,Schiele B. Robust object detection with interleaved categorization and segmentation[J].{H}International Journal of Computer Vision,2008,(01):259-289.

共引文献185

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部